論文の概要: CRUSH: Contextually Regularized and User anchored Self-supervised Hate
speech Detection
- arxiv url: http://arxiv.org/abs/2204.06389v1
- Date: Wed, 13 Apr 2022 13:51:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-14 17:02:18.846256
- Title: CRUSH: Contextually Regularized and User anchored Self-supervised Hate
speech Detection
- Title(参考訳): CRUSH: コンテキスト正規化とユーザによる自己教師型ヘイト音声検出
- Authors: Parag Dutta, Souvic Chakraborty, Sumegh Roychowdhury, Animesh
Mukherjee
- Abstract要約: CRUSHは,ユーザが選択した自己スーパービジョンと文脈正規化を用いたヘイトスピーチ検出のためのフレームワークである。
提案手法は,2種類のタスクと複数のポピュラーなソーシャルメディアデータセットに対して,過去のアプローチよりも1~12%向上する。
- 参考スコア(独自算出の注目度): 6.759148939470331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The last decade has witnessed a surge in the interaction of people through
social networking platforms. While there are several positive aspects of these
social platforms, the proliferation has led them to become the breeding ground
for cyber-bullying and hate speech. Recent advances in NLP have often been used
to mitigate the spread of such hateful content. Since the task of hate speech
detection is usually applicable in the context of social networks, we introduce
CRUSH, a framework for hate speech detection using user-anchored
self-supervision and contextual regularization. Our proposed approach secures ~
1-12% improvement in test set metrics over best performing previous approaches
on two types of tasks and multiple popular english social media datasets.
- Abstract(参考訳): 過去10年間、ソーシャルネットワーキングプラットフォームを通じて人々の交流が急増している。
これらのソーシャルプラットフォームには肯定的な側面がいくつかあるが、この増加はサイバーいじめとヘイトスピーチの繁殖地となった。
NLPの最近の進歩は、しばしばそのような憎悪な内容の拡散を緩和するために使われてきた。
ヘイトスピーチ検出のタスクは通常,ソーシャルネットワークの文脈に適用できるため,ユーザ主導の自己スーパービジョンと文脈正規化を用いたヘイトスピーチ検出のフレームワークであるcrashを導入する。
提案手法は,2種類のタスクと複数のポピュラーなソーシャルメディアデータセットにおいて,過去の手法よりも1~12%の精度向上を実現している。
関連論文リスト
- CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - BiasTestGPT: Using ChatGPT for Social Bias Testing of Language Models [73.29106813131818]
テスト文は限られた手動テンプレートから生成されるか、高価なクラウドソーシングを必要とするため、現時点ではバイアステストは煩雑である。
ソーシャルグループと属性の任意のユーザ指定の組み合わせを考慮し、テスト文の制御可能な生成にChatGPTを使うことを提案する。
本稿では,HuggingFace上にホストされているオープンソースの総合的バイアステストフレームワーク(BiasTestGPT)について紹介する。
論文 参考訳(メタデータ) (2023-02-14T22:07:57Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Improved two-stage hate speech classification for twitter based on Deep
Neural Networks [0.0]
ヘイトスピーチ(Hate speech)は、虐待的な言葉の使用を含む、オンラインハラスメントの一種である。
この研究で提案するモデルは、LSTMニューラルネットワークアーキテクチャに基づく既存のアプローチの拡張である。
本研究は,16kツイートの公開コーパスで評価された2段階目の提案手法の性能比較を含む。
論文 参考訳(メタデータ) (2022-06-08T20:57:41Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Going Extreme: Comparative Analysis of Hate Speech in Parler and Gab [2.487445341407889]
われわれはParler上でのヘイトスピーチの大規模分析を行った。
分類精度を改善するために10K Parlerの投稿に注釈を付けた。
ヘイト・モンジャーはパラーのアクティブユーザー数の16.1%を占める。
論文 参考訳(メタデータ) (2022-01-27T19:29:17Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Leveraging Transformers for Hate Speech Detection in Conversational
Code-Mixed Tweets [36.29939722039909]
本稿では,HASOC 2021サブタスク2のためのMIDAS-IIITDチームによって提案されたシステムについて述べる。
これは、Hindi- Englishのコードミキシングされた会話からヘイトスピーチを検出することに焦点を当てた最初の共有タスクの1つである。
Indic-BERT,XLM-RoBERTa,Multilingual BERTのハード投票アンサンブルがマクロF1スコア0.7253を達成した。
論文 参考訳(メタデータ) (2021-12-18T19:27:33Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHateは、単語埋め込み、感情、トピック情報などの多面的なテキスト表現を組み合わせた、新しいディープラーニングモデルです。
大規模な実験を行い、3つの大規模公開現実世界のデータセットでDeepHateを評価します。
論文 参考訳(メタデータ) (2021-03-14T16:11:30Z) - Detecting Online Hate Speech: Approaches Using Weak Supervision and
Network Embedding Models [2.3322477552758234]
本研究では,ヘイトフルユーザを定量的に発見する弱監督型深層学習モデルを提案する。
我々は、19.2Mの投稿において、我々のモデルを評価し、我々の弱い監督モデルは、間接的に憎悪的な相互作用を識別するベースラインモデルよりも優れていることを示す。
また,Gabにおける2種類のユーザインタラクション(引用と応答)と,弱監督モデルからのインタラクションスコアをエッジウェイトとして分析し,ヘイトフルユーザを予測する。
論文 参考訳(メタデータ) (2020-07-24T18:13:52Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。