Atomically-thin Single-photon Sources for Quantum Communication
- URL: http://arxiv.org/abs/2204.06427v2
- Date: Thu, 1 Dec 2022 20:47:19 GMT
- Title: Atomically-thin Single-photon Sources for Quantum Communication
- Authors: Timm Gao, Martin v. Helversen, Carlos Anton-Solanas, Christian
Schneider, Tobias Heindel
- Abstract summary: Confined excitons in monolayers of transition metal dichalcogenides (TMDCs) constitute an emerging type of emitter for quantum light generation.
We pioneer the practical suitability of TMDC devices in quantum communication.
Our work opens the route towards wider applications of quantum information technologies using TMDC single-photon sources.
- Score: 0.28348950186890465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To date, quantum communication widely relies on attenuated lasers for secret
key generation. In future quantum networks fundamental limitations resulting
from their probabilistic photon distribution must be overcome by using
deterministic quantum light sources. Confined excitons in monolayers of
transition metal dichalcogenides (TMDCs) constitute an emerging type of emitter
for quantum light generation. These atomically-thin solid-state sources show
appealing prospects for large-scale and low-cost device integration, meeting
the demands of quantum information technologies. Here, we pioneer the practical
suitability of TMDC devices in quantum communication. We employ a
$\mathrm{WSe}_2$ monolayer single-photon source to emulate the BB84 protocol in
a quantum key distribution (QKD) setup and achieve click rates of up to 66.95
kHz and antibunching values down to 0.034 - a performance competitive with QKD
experiments using semiconductor quantum dots or color centers in diamond. Our
work opens the route towards wider applications of quantum information
technologies using TMDC single-photon sources.
Related papers
- Quantum dots for photonic quantum information technology [0.0]
We discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology.
QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers.
We present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements.
arXiv Detail & Related papers (2023-09-08T09:34:49Z) - Controlling the Photon Number Coherence of Solid-state Quantum Light
Sources for Quantum Cryptography [0.0]
Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) using single photons.
A critical element regarding the security of QKD protocols is the photon number coherence (PNC)
We exploit two-photon excitation of a quantum dot combined with a stimulation pulse to generate on-demand single photons with high purity and indistinguishability.
arXiv Detail & Related papers (2023-05-31T16:46:00Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum Key Distribution using Deterministic Single-Photon Sources over
a Field-Installed Fibre Link [2.1033685912119466]
We realize a quantum key distribution field trial using true single photons across an 18-km-long dark fibre, located in the Copenhagen metropolitan area.
A secret key generation rate of >2 kbits/s realized over a 9.6 dB channel loss is achieved with a polarization-encoded BB84 scheme.
arXiv Detail & Related papers (2023-01-23T12:43:23Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z) - Quantum cryptography with highly entangled photons from semiconductor
quantum dots [0.0]
We report on the first implementation of the BBM92 protocol using a quantum dot source with an entanglement fidelity as high as 0.97(1).
For a proof of principle, the key generation is performed between two buildings, connected by 350 metre long fiber, resulting in an average key rate of 135 bits/s and a qubit error rate of 0.019 over a time span of 13 hours.
arXiv Detail & Related papers (2020-07-24T18:21:11Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.