論文の概要: The Impact of Cross-Lingual Adjustment of Contextual Word
Representations on Zero-Shot Transfer
- arxiv url: http://arxiv.org/abs/2204.06457v2
- Date: Tue, 31 Oct 2023 13:56:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 04:55:31.146662
- Title: The Impact of Cross-Lingual Adjustment of Contextual Word
Representations on Zero-Shot Transfer
- Title(参考訳): 文脈表現の言語間調整がゼロショット転送に与える影響
- Authors: Pavel Efimov and Leonid Boytsov and Elena Arslanova and Pavel
Braslavski
- Abstract要約: mBERTやXLM-Rのような大規模な多言語言語モデルは、様々なIRやNLPタスクにおいてゼロショットの言語間転送を可能にする。
そこで本研究では,mBERTの並列コーパスを用いた言語間相互調整のためのデータ・計算効率向上手法を提案する。
類型的に多様な言語(スペイン語、ロシア語、ベトナム語、ヒンディー語)を実験し、その実装を新しいタスクに拡張する。
NER, XSR, 言語間QAを改良した4言語でのNLIの再生ゲインについて検討した。
- 参考スコア(独自算出の注目度): 3.300216758849348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large multilingual language models such as mBERT or XLM-R enable zero-shot
cross-lingual transfer in various IR and NLP tasks. Cao et al. (2020) proposed
a data- and compute-efficient method for cross-lingual adjustment of mBERT that
uses a small parallel corpus to make embeddings of related words across
languages similar to each other. They showed it to be effective in NLI for five
European languages. In contrast we experiment with a typologically diverse set
of languages (Spanish, Russian, Vietnamese, and Hindi) and extend their
original implementations to new tasks (XSR, NER, and QA) and an additional
training regime (continual learning). Our study reproduced gains in NLI for
four languages, showed improved NER, XSR, and cross-lingual QA results in three
languages (though some cross-lingual QA gains were not statistically
significant), while mono-lingual QA performance never improved and sometimes
degraded. Analysis of distances between contextualized embeddings of related
and unrelated words (across languages) showed that fine-tuning leads to
"forgetting" some of the cross-lingual alignment information. Based on this
observation, we further improved NLI performance using continual learning.
- Abstract(参考訳): mBERTやXLM-Rのような大規模な多言語言語モデルは、様々なIRやNLPタスクにおいてゼロショットの言語間転送を可能にする。
Cao et al. (2020) は、小さな並列コーパスを用いて互いに類似する言語に関連語を埋め込む、mBERTの言語間調整のためのデータと計算効率のよい手法を提案した。
彼らは5つのヨーロッパ言語でNLIが有効であることを示した。
対照的に、類型的に多様な言語(スペイン語、ロシア語、ベトナム語、ヒンディー語)を実験し、元の実装を新しいタスク(XSR、NER、QA)に拡張し、追加のトレーニング体制(連続学習)を追加しました。
本研究は,4言語に対するNLIの利得を再現し,NER,XSR,クロスランガルQAを3言語で改善した(ただし,クロスランガルQAの利得は統計的に有意ではなかった)。
関連語と非関連語の文脈的埋め込み間の距離の分析は、微調整が言語間アライメント情報の「偽造」につながることを示した。
この観測に基づいて,連続学習によるNLI性能をさらに向上する。
関連論文リスト
- VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
本稿では,構成順序,構成,単語共起の3つの言語特性について検討する。
我々の主な結論は、構成順序と単語共起の寄与は限定的である一方、構成は言語間移動の成功にとってより重要であるということである。
論文 参考訳(メタデータ) (2022-03-16T07:09:35Z) - Cross-lingual Transferring of Pre-trained Contextualized Language Models [73.97131976850424]
本稿では,PRLMのための新しい言語間モデル転送フレームワークTreLMを提案する。
シンボルの順序と言語間のシーケンス長の差に対処するため,中間的なTRILayer構造を提案する。
提案手法は,スクラッチから学習した言語モデルに対して,性能と効率の両面で,限られたデータで著しく優れることを示す。
論文 参考訳(メタデータ) (2021-07-27T06:51:13Z) - Syntax-augmented Multilingual BERT for Cross-lingual Transfer [37.99210035238424]
この研究は、言語構文とトレーニングmBERTを明示的に提供することが、言語間転送に役立つことを示している。
実験の結果,mBERTの構文拡張は,一般的なベンチマーク上での言語間移動を改善することがわかった。
論文 参考訳(メタデータ) (2021-06-03T21:12:50Z) - XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation [93.80733419450225]
本稿では,言語間移動学習の現状を解析する。
XTREMEを10種類の自然言語理解タスクからなるXTREME-Rに拡張する。
論文 参考訳(メタデータ) (2021-04-15T12:26:12Z) - Towards Multi-Sense Cross-Lingual Alignment of Contextual Embeddings [41.148892848434585]
本稿では,バイリンガル辞書からのクロスリンガル信号のみを活用して,文脈埋め込みを感覚レベルで整列する新しい枠組みを提案する。
我々はまず,単語感覚を明示的にモデル化するために,新しい感覚認識型クロスエントロピー損失を提案する。
次に,言語間モデル事前学習のための感覚認識型クロスエントロピー損失と,複数の言語対に対する事前訓練型クロス言語モデルの上に,感覚アライメントの目的を提案する。
論文 参考訳(メタデータ) (2021-03-11T04:55:35Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
我々は,多言語組込みを意味空間に近づけることで,言語間伝達を改善する戦略を検討する。
言語敵対的トレーニングと言語仲裁フレームワークという2つの新しい戦略を提案し、(ゼロリソースの)クロスリンガルトランスファーのパフォーマンスを大幅に改善します。
実験により,提案モデルは,最近導入された多言語MLQAデータセットとTyDiQAデータセットにおいて,以前のゼロショットベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-10T20:29:34Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - On Learning Universal Representations Across Languages [37.555675157198145]
文レベルの表現を学習するための既存のアプローチを拡張し、言語間理解と生成の有効性を示す。
具体的には,複数の言語に分散した並列文の普遍表現を学習するための階層型コントラスト学習(HiCTL)手法を提案する。
我々は、XTREMEと機械翻訳という2つの難解な言語間タスクについて評価を行う。
論文 参考訳(メタデータ) (2020-07-31T10:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。