論文の概要: Towards Multi-Sense Cross-Lingual Alignment of Contextual Embeddings
- arxiv url: http://arxiv.org/abs/2103.06459v1
- Date: Thu, 11 Mar 2021 04:55:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-12 14:58:45.070114
- Title: Towards Multi-Sense Cross-Lingual Alignment of Contextual Embeddings
- Title(参考訳): 文脈埋め込みのマルチセンス・クロスリンガルアライメントに向けて
- Authors: Linlin Liu, Thien Hai Nguyen, Shafiq Joty, Lidong Bing, Luo Si
- Abstract要約: 本稿では,バイリンガル辞書からのクロスリンガル信号のみを活用して,文脈埋め込みを感覚レベルで整列する新しい枠組みを提案する。
我々はまず,単語感覚を明示的にモデル化するために,新しい感覚認識型クロスエントロピー損失を提案する。
次に,言語間モデル事前学習のための感覚認識型クロスエントロピー損失と,複数の言語対に対する事前訓練型クロス言語モデルの上に,感覚アライメントの目的を提案する。
- 参考スコア(独自算出の注目度): 41.148892848434585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-lingual word embeddings (CLWE) have been proven useful in many
cross-lingual tasks. However, most existing approaches to learn CLWE including
the ones with contextual embeddings are sense agnostic. In this work, we
propose a novel framework to align contextual embeddings at the sense level by
leveraging cross-lingual signal from bilingual dictionaries only. We
operationalize our framework by first proposing a novel sense-aware cross
entropy loss to model word senses explicitly. The monolingual ELMo and BERT
models pretrained with our sense-aware cross entropy loss demonstrate
significant performance improvement for word sense disambiguation tasks. We
then propose a sense alignment objective on top of the sense-aware cross
entropy loss for cross-lingual model pretraining, and pretrain cross-lingual
models for several language pairs (English to German/Spanish/Japanese/Chinese).
Compared with the best baseline results, our cross-lingual models achieve
0.52%, 2.09% and 1.29% average performance improvements on zero-shot
cross-lingual NER, sentiment classification and XNLI tasks, respectively.
- Abstract(参考訳): 言語間単語埋め込み(CLWE)は多くの言語間タスクで有用であることが証明されている。
しかし、文脈埋め込みを含むCLWEを学ぶためのほとんどの既存のアプローチは、意味不明です。
本研究では,バイリンガル辞書からのクロスリンガル信号を活用し,文脈埋め込みを感覚レベルで整列する新しい枠組みを提案する。
我々はまず,単語感覚を明示的にモデル化するために,新しい感覚認識型クロスエントロピー損失を提案する。
感覚認識のクロスエントロピー損失で予め訓練されたモノリンガルELMoおよびBERTモデルは、単語感覚の曖昧化タスクにおける大幅なパフォーマンス改善を示しています。
そこで我々は,複数の言語ペア(英語, ドイツ語, 日本語, 中国語)のクロスリンガルモデル前訓練のための感覚認識型クロスエントロピー損失に基づく感覚アライメント目標を提案する。
最良ベースラインモデルと比較すると,ゼロショット・クロスランガルNER,感情分類,XNLIタスクの平均性能は0.52%,2.09%,1.29%向上した。
関連論文リスト
- VECO 2.0: Cross-lingual Language Model Pre-training with
Multi-granularity Contrastive Learning [56.47303426167584]
複数粒度アライメントを持つコントラスト学習に基づく言語間事前学習モデルVECO2.0を提案する。
具体的には、シーケンス・ツー・シーケンスアライメントが誘導され、並列対の類似性を最大化し、非並列対を最小化する。
トークン・ツー・トークンのアライメントは、シソーラス辞書を介して発掘された同義トークンと、バイリンガルな例の他の未使用トークンとのギャップを埋めるために統合される。
論文 参考訳(メタデータ) (2023-04-17T12:23:41Z) - A Simple and Effective Method to Improve Zero-Shot Cross-Lingual
Transfer Learning [6.329304732560936]
既存のゼロショットのクロスリンガル転送法は、並列コーパスやバイリンガル辞書に依存している。
意味喪失のない仮想多言語埋め込みに英語の埋め込みを移すための埋め込み・プッシュ・アテンション・プル・ロバスト・ターゲットを提案する。
論文 参考訳(メタデータ) (2022-10-18T15:36:53Z) - The Impact of Cross-Lingual Adjustment of Contextual Word
Representations on Zero-Shot Transfer [3.300216758849348]
mBERTやXLM-Rのような大規模な多言語言語モデルは、様々なIRやNLPタスクにおいてゼロショットの言語間転送を可能にする。
そこで本研究では,mBERTの並列コーパスを用いた言語間相互調整のためのデータ・計算効率向上手法を提案する。
類型的に多様な言語(スペイン語、ロシア語、ベトナム語、ヒンディー語)を実験し、その実装を新しいタスクに拡張する。
NER, XSR, 言語間QAを改良した4言語でのNLIの再生ゲインについて検討した。
論文 参考訳(メタデータ) (2022-04-13T15:28:43Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Multi-Level Contrastive Learning for Cross-Lingual Alignment [35.33431650608965]
マルチリンガルBERT(mBERT)のような言語間事前学習モデルは、様々な言語間下流のNLPタスクにおいて大きな性能を発揮している。
本稿では,事前学習モデルの言語間能力の向上を図るために,マルチレベルコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-26T07:14:20Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - On Learning Universal Representations Across Languages [37.555675157198145]
文レベルの表現を学習するための既存のアプローチを拡張し、言語間理解と生成の有効性を示す。
具体的には,複数の言語に分散した並列文の普遍表現を学習するための階層型コントラスト学習(HiCTL)手法を提案する。
我々は、XTREMEと機械翻訳という2つの難解な言語間タスクについて評価を行う。
論文 参考訳(メタデータ) (2020-07-31T10:58:39Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
本稿では,言語間言語モデルの事前学習を定式化する情報理論フレームワークを提案する。
コントラスト学習に基づく新しい事前学習課題を提案する。
単言語コーパスと並列コーパスの両方を活用することで、事前訓練されたモデルの言語間変換性を向上させるために、プレテキストを共同で訓練する。
論文 参考訳(メタデータ) (2020-07-15T16:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。