論文の概要: Convergence and Implicit Regularization Properties of Gradient Descent
for Deep Residual Networks
- arxiv url: http://arxiv.org/abs/2204.07261v1
- Date: Thu, 14 Apr 2022 22:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 00:52:20.653450
- Title: Convergence and Implicit Regularization Properties of Gradient Descent
for Deep Residual Networks
- Title(参考訳): 深部残留ネットワーク用グラディエント蛍光体の収束と暗黙正則化特性
- Authors: Rama Cont, Alain Rossier, RenYuan Xu
- Abstract要約: 一定の層幅とスムーズな活性化関数を持つ深層残留ネットワークのトレーニングにおいて,勾配勾配の線形収束性を大域最小限に証明する。
トレーニングされた重みは、層指数の関数として、ネットワークの深さが無限大になる傾向にあるため、H"古い"スケーリング制限が連続であることを示す。
- 参考スコア(独自算出の注目度): 7.090165638014331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We prove linear convergence of gradient descent to a global minimum for the
training of deep residual networks with constant layer width and smooth
activation function. We further show that the trained weights, as a function of
the layer index, admits a scaling limit which is H\"older continuous as the
depth of the network tends to infinity. The proofs are based on non-asymptotic
estimates of the loss function and of norms of the network weights along the
gradient descent path. We illustrate the relevance of our theoretical results
to practical settings using detailed numerical experiments on supervised
learning problems.
- Abstract(参考訳): 一定の層幅とスムースアクティベーション関数を有するディープ残差ネットワークのトレーニングのために,勾配降下の線形収束を大域的最小値に証明する。
さらに,ネットワークの深さが無限になるにつれて,層指数の関数として訓練された重み付けは,h\"older continuousとなるスケーリング限界を許容することを示した。
この証明は、損失関数と勾配降下経路に沿ったネットワーク重みのノルムの非漸近的な推定に基づいている。
本稿では,教師付き学習問題に関する詳細な数値実験を用いて,理論結果と実践的設定との関係について述べる。
関連論文リスト
- Generalization of Scaled Deep ResNets in the Mean-Field Regime [55.77054255101667]
無限深度および広帯域ニューラルネットワークの限界におけるエンスケールResNetについて検討する。
この結果から,遅延学習体制を超えた深層ResNetの一般化能力に関する新たな知見が得られた。
論文 参考訳(メタデータ) (2024-03-14T21:48:00Z) - Convergence Analysis for Learning Orthonormal Deep Linear Neural
Networks [27.29463801531576]
本稿では,正規直交深部線形ニューラルネットワークの学習のための収束解析について述べる。
その結果、隠れた層の増加が収束速度にどのように影響するかが明らかになった。
論文 参考訳(メタデータ) (2023-11-24T18:46:54Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
線形分離可能なデータに対して、ロジスティックあるいは指数損失の深い線形ネットワークを訓練すると、重みは1$の行列に収束する。
非線形ReLU活性化フィードフォワードネットワークに対して、低ランク現象が厳格に証明されたのはこれが初めてである。
我々の証明は、あるパラメータの方向収束の下で重みが一定である多重線型関数と別のReLUネットワークへのネットワークの特定の分解に依存している。
論文 参考訳(メタデータ) (2022-01-28T07:31:19Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Learning Quantized Neural Nets by Coarse Gradient Method for Non-linear
Classification [3.158346511479111]
特定の単調性を持つSTEのクラスを提案し、量子化されたアクティベーション関数を持つ2層ネットワークのトレーニングへの応用について検討する。
提案したSTEに対して,対応する粗度勾配法が大域最小値に収束することを示し,性能保証を確立する。
論文 参考訳(メタデータ) (2020-11-23T07:50:09Z) - Implicit Under-Parameterization Inhibits Data-Efficient Deep
Reinforcement Learning [97.28695683236981]
さらなる勾配更新により、現在の値ネットワークの表現性が低下する。
AtariとGymのベンチマークでは、オフラインとオンラインのRL設定の両方でこの現象を実証する。
論文 参考訳(メタデータ) (2020-10-27T17:55:16Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
勾配に基づく手法によるロジスティック(クロスエントロピー)損失を最小限に抑えるために訓練されたニューラルネットワークは、多くの教師付き分類タスクでうまく機能する。
我々は、均一な活性化を伴う無限に広い2層ニューラルネットワークのトレーニングと一般化の挙動を解析する。
論文 参考訳(メタデータ) (2020-02-11T15:42:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。