論文の概要: Knowledge Equivalence in Digital Twins of Intelligent Systems
- arxiv url: http://arxiv.org/abs/2204.07481v3
- Date: Thu, 31 Oct 2024 08:41:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:56:33.180434
- Title: Knowledge Equivalence in Digital Twins of Intelligent Systems
- Title(参考訳): 知的システムのデジタル双対における知識等価性
- Authors: Nan Zhang, Rami Bahsoon, Nikos Tziritas, Georgios Theodoropoulos,
- Abstract要約: 本論文は,知的システムのデジタル双対モデルに焦点をあてる。
このようなインテリジェントな物理システムのモデリングには、仮想空間における知識認識能力を複製する必要がある。
本稿では,知識比較と更新による知識等価性の概念と等価性維持手法を提案する。
- 参考スコア(独自算出の注目度): 3.7953718547499045
- License:
- Abstract: A digital twin contains up-to-date data-driven models of the physical world being studied and can use simulation to optimise the physical world. However, the analysis made by the digital twin is valid and reliable only when the model is equivalent to the physical world. Maintaining such an equivalent model is challenging, especially when the physical systems being modelled are intelligent and autonomous. The paper focuses in particular on digital twin models of intelligent systems where the systems are knowledge-aware but with limited capability. The digital twin improves the acting of the physical system at a meta-level by accumulating more knowledge in the simulated environment. The modelling of such an intelligent physical system requires replicating the knowledge-awareness capability in the virtual space. Novel equivalence maintaining techniques are needed, especially in synchronising the knowledge between the model and the physical system. This paper proposes the notion of knowledge equivalence and an equivalence maintaining approach by knowledge comparison and updates. A quantitative analysis of the proposed approach confirms that compared to state equivalence, knowledge equivalence maintenance can tolerate deviation thus reducing unnecessary updates and achieve more Pareto efficient solutions for the trade-off between update overhead and simulation reliability.
- Abstract(参考訳): デジタルツインは、研究中の物理世界の最新のデータ駆動モデルを含み、シミュレーションを使用して物理世界を最適化することができる。
しかし、デジタルツインによる解析は、モデルが物理世界と等価である場合に限り有効で信頼性が高い。
そのようなモデルを維持することは、特にモデル化されている物理システムがインテリジェントで自律的である場合、難しい。
本論文は,知的システムのデジタル双対モデルに焦点をあてる。
デジタルツインは、シミュレーション環境でより多くの知識を蓄積することにより、物理系のメタレベルでの動作を改善する。
このようなインテリジェントな物理システムのモデリングには、仮想空間における知識認識能力を複製する必要がある。
モデルと物理系の知識を同期させるには、新しい等価性維持技術が必要である。
本稿では,知識比較と更新による知識等価性の概念と等価性維持手法を提案する。
提案手法の定量的解析により, 状態等価性と比較して, 知識等価性維持はずれを許容し, 不要な更新を低減し, 更新オーバーヘッドとシミュレーション信頼性のトレードオフに対するよりパレート効率の高い解が得られることを確認した。
関連論文リスト
- From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
デジタル双対とは何かという合意的な定義は存在しない。
我々のデジタルツインプロトタイプ(DTP)アプローチは、組み込みソフトウェアシステムの開発と自動テストにおいて、エンジニアを支援します。
論文 参考訳(メタデータ) (2024-01-15T22:13:48Z) - Digital Twin Framework for Optimal and Autonomous Decision-Making in
Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
Gas Industry [0.0]
本研究は,石油・ガス産業におけるガスリフトプロセスに適用可能な,最適かつ自律的な意思決定のためのディジタルツインフレームワークを提案する。
このフレームワークは、ベイジアン推論、モンテカルロシミュレーション、トランスファーラーニング、オンライン学習、そしてDTに認知を与える新しい戦略を組み合わせたものである。
論文 参考訳(メタデータ) (2023-11-21T18:02:52Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Probabilistic machine learning based predictive and interpretable
digital twin for dynamical systems [0.0]
ディジタルツインを更新するための2つのアプローチが提案されている。
どちらの場合も、更新されたデジタル双生児の表現は同一である。
提案手法は、ディジタル双対モデルにおける摂動の正確な説明を提供する。
論文 参考訳(メタデータ) (2022-12-19T04:25:59Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z) - Machine learning based digital twin for dynamical systems with multiple
time-scales [0.0]
デジタルツイン技術は、インフラ、航空宇宙、自動車といった様々な産業分野で広く応用される可能性がある。
ここでは、2つの異なる運用時間スケールで進化する線形単一自由度構造力学系のためのデジタルツインフレームワークに焦点を当てる。
論文 参考訳(メタデータ) (2020-05-12T15:33:25Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - The role of surrogate models in the development of digital twins of
dynamic systems [0.0]
デジタルツイン技術は、幅広い応用可能性の約束、関連性、可能性を秘めている。
デジタルツインはデータと計算手法を活用することが期待されている。
我々は,デジタルツイン技術における代理モデルの利用の可能性について検討した。
論文 参考訳(メタデータ) (2020-01-25T10:48:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。