Knowledge Equivalence in Digital Twins of Intelligent Systems
- URL: http://arxiv.org/abs/2204.07481v3
- Date: Thu, 31 Oct 2024 08:41:45 GMT
- Title: Knowledge Equivalence in Digital Twins of Intelligent Systems
- Authors: Nan Zhang, Rami Bahsoon, Nikos Tziritas, Georgios Theodoropoulos,
- Abstract summary: The paper focuses in particular on digital twin models of intelligent systems where the systems are knowledge-aware but with limited capability.
The modelling of such an intelligent physical system requires replicating the knowledge-awareness capability in the virtual space.
This paper proposes the notion of knowledge equivalence and an equivalence maintaining approach by knowledge comparison and updates.
- Score: 3.7953718547499045
- License:
- Abstract: A digital twin contains up-to-date data-driven models of the physical world being studied and can use simulation to optimise the physical world. However, the analysis made by the digital twin is valid and reliable only when the model is equivalent to the physical world. Maintaining such an equivalent model is challenging, especially when the physical systems being modelled are intelligent and autonomous. The paper focuses in particular on digital twin models of intelligent systems where the systems are knowledge-aware but with limited capability. The digital twin improves the acting of the physical system at a meta-level by accumulating more knowledge in the simulated environment. The modelling of such an intelligent physical system requires replicating the knowledge-awareness capability in the virtual space. Novel equivalence maintaining techniques are needed, especially in synchronising the knowledge between the model and the physical system. This paper proposes the notion of knowledge equivalence and an equivalence maintaining approach by knowledge comparison and updates. A quantitative analysis of the proposed approach confirms that compared to state equivalence, knowledge equivalence maintenance can tolerate deviation thus reducing unnecessary updates and achieve more Pareto efficient solutions for the trade-off between update overhead and simulation reliability.
Related papers
- From Digital Twins to Digital Twin Prototypes: Concepts, Formalization,
and Applications [55.57032418885258]
There is no consensual definition of what a digital twin is.
Our digital twin prototype (DTP) approach supports engineers during the development and automated testing of embedded software systems.
arXiv Detail & Related papers (2024-01-15T22:13:48Z) - Digital Twin Framework for Optimal and Autonomous Decision-Making in
Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
Gas Industry [0.0]
This work proposes a digital twin framework for optimal and autonomous decision-making applied to a gas-lift process in the oil and gas industry.
The framework combines Bayesian inference, Monte Carlo simulations, transfer learning, online learning, and novel strategies to confer cognition to the DT.
arXiv Detail & Related papers (2023-11-21T18:02:52Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Probabilistic machine learning based predictive and interpretable
digital twin for dynamical systems [0.0]
Two approaches for updating the digital twin are proposed.
In both cases, the resulting expressions of updated digital twins are identical.
The proposed approaches provide an exact and explainable description of the perturbations in digital twin models.
arXiv Detail & Related papers (2022-12-19T04:25:59Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z) - Machine learning based digital twin for dynamical systems with multiple
time-scales [0.0]
Digital twin technology has a huge potential for widespread applications in different industrial sectors such as infrastructure, aerospace, and automotive.
Here we focus on a digital twin framework for linear single-degree-of-freedom structural dynamic systems evolving in two different operational time scales.
arXiv Detail & Related papers (2020-05-12T15:33:25Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - The role of surrogate models in the development of digital twins of
dynamic systems [0.0]
Digital twin technology has significant promise, relevance and potential of widespread applicability.
Digital twins are expected to exploit data and computational methods.
We have explored the possibility of using surrogate models within the digital twin technology.
arXiv Detail & Related papers (2020-01-25T10:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.