Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models
- URL: http://arxiv.org/abs/2411.11497v2
- Date: Mon, 07 Jul 2025 16:30:17 GMT
- Title: Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models
- Authors: Muhammad Saad Zia, Ashiq Anjum, Lu Liu, Anthony Conway, Anasol Pena Rios,
- Abstract summary: Physics Informed Machine Learning has emerged as a popular approach for modeling and simulation in digital twins.<n>This paper presents a generic approach based on a novel physics-encoded residual neural network architecture.<n>Our method integrates differentiable physics blocks-implementing mathematical operators from physics-based models with feed-forward learning blocks.
- Score: 2.8720819157502344
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physics Informed Machine Learning has emerged as a popular approach for modeling and simulation in digital twins, enabling the generation of accurate models of processes and behaviors in real-world systems. However, existing methods either rely on simple loss regularizations that offer limited physics integration or employ highly specialized architectures that are difficult to generalize across diverse physical systems. This paper presents a generic approach based on a novel physics-encoded residual neural network (PERNN) architecture that seamlessly combines data-driven and physics-based analytical models to overcome these limitations. Our method integrates differentiable physics blocks-implementing mathematical operators from physics-based models with feed-forward learning blocks, while intermediate residual blocks ensure stable gradient flow during training. Consequently, the model naturally adheres to the underlying physical principles even when prior physics knowledge is incomplete, thereby improving generalizability with low data requirements and reduced model complexity. We investigate our approach in two application domains. The first is a steering model for autonomous vehicles in a simulation environment, and the second is a digital twin for climate modeling using an ordinary differential equation (ODE)-based model of Net Ecosystem Exchange (NEE) to enable gap-filling in flux tower data. In both cases, our method outperforms conventional neural network approaches as well as state-of-the-art Physics Informed Machine Learning methods.
Related papers
- Universal Physics Simulation: A Foundational Diffusion Approach [0.0]
We present the first foundational AI model for universal physics simulation that learns physical laws directly from boundary-condition data.<n>Our sketch-guided diffusion transformer approach reimagines computational physics by treating simulation as a conditional generation problem.<n>Unlike sequential time-stepping methods that accumulate errors over iterations, our approach bypasses temporal integration entirely.
arXiv Detail & Related papers (2025-07-13T18:12:34Z) - Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport [48.06072022424773]
Many real-world systems are described only approximately with missing or unknown terms in the equations.<n>This makes the distribution of the physics model differ from the true data-generating process (DGP)<n>We present a novel hybrid generative model approach combining deep grey-box modelling with Optimal Transport (OT) methods to enhance incomplete physics models.
arXiv Detail & Related papers (2025-06-27T13:23:27Z) - Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
A physical problem, the Taylor-Green vortex, defined on a bi-periodic domain, is used as a benchmark to evaluate the performance of both the standard physics-informed neural network and our model.
Results exhibit that while the standard physics-informed neural network fails to predict the solution accurately and merely returns the initial condition for the entire time span, our model successfully captures the temporal changes in the physics.
arXiv Detail & Related papers (2024-10-05T10:32:51Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
We propose a novel architecture for generating model-integrated neural networks (MINN)
MINN allows integration on the level of learning physics-based dynamics of the system.
We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries.
arXiv Detail & Related papers (2023-04-27T09:11:40Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
We propose a physics-guided hybrid approach for modeling non-autonomous systems under control.
This is extended by a recurrent neural network and trained using a sophisticated multi-objective strategy.
Experiments conducted on real data reveal substantial accuracy improvements by our approach compared to a physics-based model.
arXiv Detail & Related papers (2022-04-27T14:33:02Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
We propose a solution to simulate hyper-elastic materials using a data-driven approach.
A neural network is trained to learn the non-linear relationship between boundary conditions and the resulting displacement field.
The results show that our network architecture trained with a limited amount of data can predict the displacement field in less than a millisecond.
arXiv Detail & Related papers (2021-09-17T12:15:47Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Physics-Informed Neural State Space Models via Learning and Evolution [1.1086440815804224]
We study methods for discovering neural state space dynamics models for system identification.
We employ an asynchronous genetic search algorithm that alternates between model selection and optimization.
arXiv Detail & Related papers (2020-11-26T23:35:08Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
We present a task for navigating a marble to the center of a circular maze.
We present a model that learns to move a marble in the complex environment within minutes of interacting with the real system.
arXiv Detail & Related papers (2020-11-14T02:03:08Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.