論文の概要: CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems
- arxiv url: http://arxiv.org/abs/2204.08085v1
- Date: Sun, 17 Apr 2022 20:38:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 01:30:50.452603
- Title: CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems
- Title(参考訳): CPFair:パーソナライズされた消費者と生産者フェアネスがリコメンダーシステムに再ランク
- Authors: Mohammadmehdi Naghiaei, Hossein A. Rahmani, Yashar Deldjoo
- Abstract要約: 本稿では,消費者側と生産側の両方から公平性制約をシームレスに統合する最適化に基づく再ランク付け手法を提案する。
提案手法は, 消費者と生産者の公正性を両立させ, 全体的な推奨品質を低下させることなく向上させることができることを示す。
- 参考スコア(独自算出の注目度): 5.145741425164946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been a rising awareness that when machine learning (ML)
algorithms are used to automate choices, they may treat/affect individuals
unfairly, with legal, ethical, or economic consequences. Recommender systems
are prominent examples of such ML systems that assist users in making
high-stakes judgments. A common trend in the previous literature research on
fairness in recommender systems is that the majority of works treat user and
item fairness concerns separately, ignoring the fact that recommender systems
operate in a two-sided marketplace. In this work, we present an
optimization-based re-ranking approach that seamlessly integrates fairness
constraints from both the consumer and producer-side in a joint objective
framework. We demonstrate through large-scale experiments on 8 datasets that
our proposed method is capable of improving both consumer and producer fairness
without reducing overall recommendation quality, demonstrating the role
algorithms may play in minimizing data biases.
- Abstract(参考訳): 近年、機械学習(ML)アルゴリズムが選択を自動化する際には、法的、倫理的、経済的な影響で個人を不公平に扱う/影響する可能性があるという認識が高まっている。
推薦システムは、ユーザーが高い判断を下すのを助けるようなMLシステムの顕著な例である。
前回のレコメンダシステムにおけるフェアネスに関する文献研究で一般的な傾向は、多くの作品がユーザーとアイテムのフェアネスを別々に扱い、レコメンダシステムが双方向のマーケットプレースで動作するという事実を無視していることである。
本研究では,消費者と生産者双方の公正性制約をシームレスに統合する,最適化に基づく再ランク付け手法を提案する。
提案手法は, 消費者と生産者の公正性を両立させることができ, 全体的な推奨品質を低下させることなく, データのバイアスを最小限に抑えることができることを示す。
関連論文リスト
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
そこで本研究では,ソフトラベルを活用することで,目的を2つの側面として捉えるために,分離されたソフトラベル最適化フレームワークを提案する。
本稿では,ラベル伝搬アルゴリズムをモデル化したソフトラベル生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-09T04:20:15Z) - Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
人気アイテムの小さなセットが、高い相互作用率のために推奨結果を支配している。
この現象は、ニッチな興味のある人を無視しながら、メインストリームの趣味を持つユーザーに不当に利益をもたらす。
本稿では,推薦モデルのトレーニングプロセスに介入することで,この問題に対処するプロセス内アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-07T08:34:18Z) - A Personalized Framework for Consumer and Producer Group Fairness
Optimization in Recommender Systems [13.89038866451741]
本稿では,CP-FairRankを提案する。CP-FairRankは,消費者と生産者の双方の公正性制約をシームレスに統合する最適化アルゴリズムである。
提案手法は, 消費者および生産者の公正性を, 全体的な推薦品質を損なうことなく向上させることができることを示す。
論文 参考訳(メタデータ) (2024-02-01T10:42:05Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Consumer-side Fairness in Recommender Systems: A Systematic Survey of
Methods and Evaluation [1.4123323039043334]
機械学習手法における差別意識の高まりは、学界と産業の両方を動機付け、レコメンデーションシステムにおける公正性の確保について研究した。
推薦制度では、そのような問題は職業推薦によってよく例示されており、歴史的データの偏見は、1つの性別から低い賃金、あるいはステレオタイプの普及に関する推薦制度につながる可能性がある。
本調査は、リコメンデーションシステムにおける消費者側の公正性に関する現在の研究の体系的概要と議論である。
論文 参考訳(メタデータ) (2023-05-16T10:07:41Z) - Improving Recommendation Fairness via Data Augmentation [66.4071365614835]
協調フィルタリングに基づくレコメンデーションは、すべてのユーザの過去の行動データからユーザの好みを学習し、意思決定を容易にするために人気がある。
ユーザの敏感な属性に応じて異なるユーザグループに対して等しく機能しない場合には,レコメンダシステムは不公平であると考えられる。
本稿では,データ拡張の観点から,レコメンデーションフェアネスを改善する方法について検討する。
論文 参考訳(メタデータ) (2023-02-13T13:11:46Z) - Application of Machine Learning for Online Reputation Systems [0.4125187280299248]
本稿では、消費者プロフィールから消費者の信頼度を予測するために機械学習を用いた新しい評価システムを提案する。
提案モデルは10-Foldsクロスバリデーションを用いて、3つのMovieLensベンチマークデータセットで評価されている。
論文 参考訳(メタデータ) (2022-09-10T12:31:40Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - User-oriented Fairness in Recommendation [21.651482297198687]
我々は,レコメンダシステムにおける不公平性問題に対して,ユーザの視点から対処する。
ユーザの行動レベルに応じて、有利で不利なグループにグループ化します。
提案手法は,レコメンデーションシステムにおけるユーザのグループ公平性を向上するだけでなく,全体的なレコメンデーション性能も向上する。
論文 参考訳(メタデータ) (2021-04-21T17:50:31Z) - DeepFair: Deep Learning for Improving Fairness in Recommender Systems [63.732639864601914]
レコメンダーシステムにおけるバイアス管理の欠如は、少数派が不公平な勧告を受けることになる。
本稿では,ユーザの人口統計情報を知ることなく,公平さと正確さを最適なバランスで組み合わせたDeep Learningベースの協調フィルタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-09T13:39:38Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。