論文の概要: Hierarchical Optimal Transport for Comparing Histopathology Datasets
- arxiv url: http://arxiv.org/abs/2204.08324v1
- Date: Mon, 18 Apr 2022 13:52:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 18:34:05.870191
- Title: Hierarchical Optimal Transport for Comparing Histopathology Datasets
- Title(参考訳): 病理組織データの比較のための階層的最適輸送
- Authors: Anna Yeaton, Rahul G. Krishnan, Rebecca Mieloszyk, David Alvarez-Melis
and Grace Huynh
- Abstract要約: 本稿では,最適な輸送距離の階層的一般化に基づく病理組織学データセット間の距離の原理的概念を提案する。
本手法はトレーニングを一切必要とせず,モデルタイプに非依存であり,タイリングによる病理組織学的データセットの階層構造の多くを保存している。
- 参考スコア(独自算出の注目度): 12.722028880166278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scarcity of labeled histopathology data limits the applicability of deep
learning methods to under-profiled cancer types and labels. Transfer learning
allows researchers to overcome the limitations of small datasets by
pre-training machine learning models on larger datasets \emph{similar} to the
small target dataset. However, similarity between datasets is often determined
heuristically. In this paper, we propose a principled notion of distance
between histopathology datasets based on a hierarchical generalization of
optimal transport distances. Our method does not require any training, is
agnostic to model type, and preserves much of the hierarchical structure in
histopathology datasets imposed by tiling. We apply our method to H\&E stained
slides from The Cancer Genome Atlas from six different cancer types. We show
that our method outperforms a baseline distance in a cancer-type prediction
task. Our results also show that our optimal transport distance predicts
difficulty of transferability in a tumor vs.~normal prediction setting.
- Abstract(参考訳): ラベル付き病理データの共有は、深層学習法のがんタイプやラベルへの適用性を制限している。
転送学習により、研究者は小さなターゲットデータセットに対して大きなデータセット上で機械学習モデルを事前トレーニングすることで、小さなデータセットの制限を克服できる。
しかし、データセット間の類似性はしばしばヒューリスティックに決定される。
本稿では,最適な輸送距離の階層的一般化に基づく病理組織学データセット間の距離の原理的概念を提案する。
本手法は, トレーニングを必要とせず, モデルタイプに依存せず, ティリングにより付与される病理組織学データセットに階層構造の多くを保存できる。
本手法を,癌ゲノムアトラスから得られたh\&e染色スライドに適用する。
本手法は, 癌型予測タスクにおいて, ベースライン距離よりも優れることを示す。
また, 腫瘍の転移能の難易度は, 最適な輸送距離が予測できることを示した。
〜正常予測設定。
関連論文リスト
- EP-SAM: Weakly Supervised Histopathology Segmentation via Enhanced Prompt with Segment Anything [3.760646312664378]
がんなどの疾患の病理診断は、従来、医師や病理医による形態学的特徴の評価に頼っていた。
近年,診断支援ツールとしてコンピュータ支援診断(CAD)システムの進歩が注目されている。
本稿では,クラスアクティベーションマップとSAMに基づく擬似ラベルを組み合わせ,弱教師付きセマンティックセマンティックセグメンテーション(WSSS)モデルを提案する。
論文 参考訳(メタデータ) (2024-10-17T14:55:09Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Data and Knowledge Co-driving for Cancer Subtype Classification on
Multi-Scale Histopathological Slides [4.22412600279685]
病理学者のような組織学的スライド上で癌サブタイプ分類の過程を再現するデータ・知識共同運転(D&K)モデルを提案する。
具体的には、データ駆動モジュールにおいて、アンサンブル学習におけるバッグング機構を利用して、埋め込み表現ユニットによって抽出された様々なバッグの組織学的特徴を統合する。
論文 参考訳(メタデータ) (2023-04-18T21:57:37Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer
Data [4.843654097048771]
SSL(Self-Supervised Learning)メソッドは、通常はラベル付きデータを扱うために使用される。
我々は、SSLコンポーネントからなる新しい事前学習パラダイムを開発する。
本手法はTGAパン癌データセットの癌型分類における最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2022-10-03T11:20:12Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
子宮頸癌細胞検出のための新しい半教師付き深度測定法を提案する。
私たちのモデルは、埋め込みメトリック空間を学習し、提案レベルとプロトタイプレベルの両方でセマンティック機能の二重アライメントを行います。
本研究は,240,860個の頸部細胞画像からなる半監督型頸部がん細胞検出のための大規模データセットを初めて構築した。
論文 参考訳(メタデータ) (2021-04-07T17:11:27Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
論文 参考訳(メタデータ) (2020-08-17T15:49:30Z) - Mitosis Detection Under Limited Annotation: A Joint Learning Approach [5.117836409118142]
深層学習に基づく有糸分裂検出は病理学者と同等であるが、トレーニングには大きなラベル付きデータが必要である。
そこで本研究では,距離距離メトリック学習を用いて,軟弱損失によるクラスラベル情報とサンプル間の空間分布情報を活用することで,ミトーシス検出の深層分類フレームワークを提案する。
本フレームワークは,トレーニングデータ全体の使用方法と比較して,少ないトレーニングデータによる検出を著しく改善し,同等あるいは優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-06-17T10:46:29Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。