論文の概要: Detecting, Tracking and Counting Motorcycle Rider Traffic Violations on
Unconstrained Roads
- arxiv url: http://arxiv.org/abs/2204.08364v1
- Date: Mon, 18 Apr 2022 15:17:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-19 16:00:37.823775
- Title: Detecting, Tracking and Counting Motorcycle Rider Traffic Violations on
Unconstrained Roads
- Title(参考訳): 非拘束道路でのオートバイライダーの交通違反の検出、追跡、計数
- Authors: Aman Goyal, Dev Agarwal, Anbumani Subramanian, C.V. Jawahar, Ravi
Kiran Sarvadevabhatla, Rohit Saluja
- Abstract要約: 制限のない道路交通条件の多くのアジア諸国では、ヘルメットやトリプルライディングなどの運転違反がオートバイの死亡原因となっている。
車両に搭載されたダッシュボードカメラから撮影したビデオにおいて、オートバイの乗馬違反を検出し、追跡し、カウントする手法を提案する。
- 参考スコア(独自算出の注目度): 27.351236436457445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many Asian countries with unconstrained road traffic conditions, driving
violations such as not wearing helmets and triple-riding are a significant
source of fatalities involving motorcycles. Identifying and penalizing such
riders is vital in curbing road accidents and improving citizens' safety. With
this motivation, we propose an approach for detecting, tracking, and counting
motorcycle riding violations in videos taken from a vehicle-mounted dashboard
camera. We employ a curriculum learning-based object detector to better tackle
challenging scenarios such as occlusions. We introduce a novel trapezium-shaped
object boundary representation to increase robustness and tackle the
rider-motorcycle association. We also introduce an amodal regressor that
generates bounding boxes for the occluded riders. Experimental results on a
large-scale unconstrained driving dataset demonstrate the superiority of our
approach compared to existing approaches and other ablative variants.
- Abstract(参考訳): 制限のない道路交通条件の多くのアジア諸国では、ヘルメットやトリプルライディングなどの運転違反がオートバイの死亡原因となっている。
このような乗客の特定と罰則は、道路事故の抑制と市民の安全向上に不可欠である。
このモチベーションにより,車載ダッシュボードカメラから撮影した映像において,オートバイの乗車違反を検出し,追跡し,計数する手法を提案する。
我々は、オクルージョンのような難解なシナリオに対処するために、カリキュラムベースのオブジェクト検出器を用いています。
我々は,新しいトラペジウム形物体境界表現を導入し,ロバスト性を高め,ライダー・モーターサイクル・アソシエーションに取り組む。
また,オクルードライダーのバウンディングボックスを生成するアモーダルレグレッサについても紹介する。
大規模非拘束運転データセットによる実験結果から,既存手法および他の改良型と比較して,我々のアプローチの優位性を示した。
関連論文リスト
- Evaluating Vision-Language Models for Zero-Shot Detection, Classification, and Association of Motorcycles, Passengers, and Helmets [0.0]
本研究では,映像データを用いたオートバイ利用者のヘルメット着用状況の検出と分類において,高度な視覚言語基盤モデルOWLv2の有効性について検討した。
我々は、OWLv2とCNNモデルを統合して、検出および分類タスクにカスケードモデルアプローチを採用する。
結果は、不完全で偏りのあるトレーニングデータセットから生じる課題に対処するためのゼロショット学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-05T05:30:36Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - On using Machine Learning Algorithms for Motorcycle Collision Detection [0.0]
衝突シミュレーションにより,エアバッグやシートベルトなどの受動的安全対策を装備すれば,車両衝突時の重傷や死亡のリスクを大幅に低減できることが示された。
本稿では,衝突を確実に検出する上での課題として,機械学習アルゴリズムの適用性について検討する。
論文 参考訳(メタデータ) (2024-03-14T15:32:25Z) - Context-Aware Quantitative Risk Assessment Machine Learning Model for
Drivers Distraction [0.0]
MDDRA(Multi-class Driver Distraction Risk Assessment)モデルは、旅行中の車両、運転者、環境データを考慮したモデルである。
MDDRAは、危険行列上のドライバーを安全、不注意、危険と分類する。
我々は、重度レベルに応じて運転者の気晴らしを分類し、予測するために機械学習技術を適用した。
論文 参考訳(メタデータ) (2024-02-20T23:20:36Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
本研究では,視覚的観察と運転者の注意に対する人為的な文章記述の認識を効果的に活用し,モデルトレーニングを容易にする認知事故予測手法を提案する。
CAPは、注意テキスト〜ビジョンシフト融合モジュール、注意シーンコンテキスト転送モジュール、運転注意誘導事故予測モジュールによって構成される。
我々は,1,727件の事故ビデオと219万フレーム以上の大規模ベンチマークを構築した。
論文 参考訳(メタデータ) (2022-12-19T11:43:02Z) - E-Scooter Rider Detection and Classification in Dense Urban Environments [5.606792370296115]
本研究は,検出モデルの客観的評価を容易にするために,部分閉塞型E-スクータライダー検出のための新しいベンチマークを提案する。
技術の現状に対して15.93%の精度で検出性能を向上する,E-Scooterライダー検出の新規なオクルージョン対応手法を提案する。
論文 参考訳(メタデータ) (2022-05-20T13:50:36Z) - CycleSense: Detecting Near Miss Incidents in Bicycle Traffic from Mobile
Motion Sensors [3.5127092215732176]
世界中の都市では、自動車は健康と交通の問題を引き起こし、自転車のモルタルシェアの増加によって部分的に緩和される可能性がある。
しかし、多くの人々は、認識された安全性の欠如のためにサイクリングを避けます。
都市計画者にとって、サイクリストが安全な場所やそうでない場所についての洞察が欠けているため、この問題に対処することは難しい。
論文 参考訳(メタデータ) (2022-04-21T21:43:23Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
運転環境の要素が道路ルールの出現の原因となるかを分析する。
2つの重要な要因が雑音知覚とエージェントの空間密度であることがわかった。
我々の結果は、世界中の国々が安全で効率的な運転で合意した社会道路規則を実証的に支持する。
論文 参考訳(メタデータ) (2020-11-21T09:43:50Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
本稿では,車内映像と交通シーン映像の両方に基づいて運転者の意図を検出する枠組みを提案する。
本フレームワークは,83.98%,F1スコア84.3%の精度で予測を行う。
論文 参考訳(メタデータ) (2020-06-20T11:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。