論文の概要: Image Data Augmentation for Deep Learning: A Survey
- arxiv url: http://arxiv.org/abs/2204.08610v1
- Date: Tue, 19 Apr 2022 02:05:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-21 00:16:03.570254
- Title: Image Data Augmentation for Deep Learning: A Survey
- Title(参考訳): ディープラーニングのための画像データ拡張:調査
- Authors: Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao and
Furao Shen
- Abstract要約: 我々は、異なる画像データ拡張手法を体系的にレビューする。
本稿では,レビュー手法の分類法を提案し,これらの手法の長所と短所について述べる。
また,3種類のコンピュータビジョンタスクに対して,様々なデータ拡張手法による広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 7.616402665866617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has achieved remarkable results in many computer vision tasks.
Deep neural networks typically rely on large amounts of training data to avoid
overfitting. However, labeled data for real-world applications may be limited.
By improving the quantity and diversity of training data, data augmentation has
become an inevitable part of deep learning model training with image data.
As an effective way to improve the sufficiency and diversity of training
data, data augmentation has become a necessary part of successful application
of deep learning models on image data. In this paper, we systematically review
different image data augmentation methods. We propose a taxonomy of reviewed
methods and present the strengths and limitations of these methods. We also
conduct extensive experiments with various data augmentation methods on three
typical computer vision tasks, including semantic segmentation, image
classification and object detection. Finally, we discuss current challenges
faced by data augmentation and future research directions to put forward some
useful research guidance.
- Abstract(参考訳): 深層学習は多くのコンピュータビジョンタスクにおいて顕著な成果を上げている。
ディープニューラルネットワークは通常、過度な適合を避けるために大量のトレーニングデータに依存する。
しかし、実際のアプリケーション用のラベル付きデータは制限される可能性がある。
トレーニングデータの量と多様性を改善することにより、画像データを用いたディープラーニングモデルのトレーニングでは、データ拡張が避けられない部分となっている。
訓練データの満足度と多様性を向上させる効果的な方法として,深層学習モデルを画像データに適用するためには,データ拡張が不可欠である。
本稿では,異なる画像データ拡張手法を体系的に検討する。
レビュー手法の分類法を提案し,これらの手法の強みと限界を示す。
また,セマンティクスセグメンテーション,画像分類,オブジェクト検出といった3つの典型的なコンピュータビジョンタスクにおいて,様々なデータ拡張手法を用いて広範な実験を行った。
最後に,データ拡張が直面する現在の課題と今後の研究指針について検討し,有用な研究指導を行う。
関連論文リスト
- A Review of Image Retrieval Techniques: Data Augmentation and Adversarial Learning Approaches [0.0]
本稿では,検索性能向上におけるデータ強化と対人学習技術の役割について概説する。
データ拡張は、より多様なトレーニングサンプルを生成し、現実世界のバリエーションをシミュレートし、オーバーフィッティングを減らすことで、モデルの一般化能力と堅牢性を高める。
敵の攻撃と防衛は 訓練中に混乱をもたらす 潜在的な攻撃に対する モデルの堅牢性を改善するために
論文 参考訳(メタデータ) (2024-09-02T12:55:17Z) - Colorful Cutout: Enhancing Image Data Augmentation with Curriculum Learning [8.406910685074136]
本研究では,画像データ拡張のためのカリキュラムデータ拡張を採用し,カラフルなカットアウトを提案する。
実験結果は,画像データに対するカリキュラムデータ拡張の可能性を強調した。
論文 参考訳(メタデータ) (2024-03-29T06:53:52Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Diffusion-based Data Augmentation for Skin Disease Classification:
Impact Across Original Medical Datasets to Fully Synthetic Images [2.5075774184834803]
深層ニューラルネットワークは、過度な適合を避けるために、依然として大量のトレーニングデータに依存している。
医療のような現実世界のアプリケーションのためのラベル付きトレーニングデータには制限があり、アクセスが困難である。
我々は,我々の大脳皮質皮膚疾患データセットのトレーニングサンプルを増強する上で,テキスト・画像拡散確率モデルの成功を生かした。
論文 参考訳(メタデータ) (2023-01-12T04:22:23Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
データ拡張の背景、レビューされたデータ拡張技術の新しい包括的分類法、および各技術の強さと弱点(可能ならば)を提供する。
また、画像分類、オブジェクト検出、セマンティックセグメンテーションなどの3つの一般的なコンピュータビジョンタスクに対して、データ拡張効果の総合的な結果を提供する。
論文 参考訳(メタデータ) (2023-01-07T11:37:32Z) - Image Augmentation for Multitask Few-Shot Learning: Agricultural Domain
Use-Case [0.0]
本稿では,植物フェノミクスドメインの例に基づいて,小規模で不均衡なデータセットに挑戦する。
画像拡張フレームワークを導入することで,トレーニングサンプル数を大幅に拡大することができる。
本手法は,少数のトレーニングサンプルが利用可能であれば,モデル性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-24T14:08:34Z) - Data Augmentation for Meta-Learning [58.47185740820304]
メタ学習アルゴリズムは、各トレーニングステップでデータ、クエリデータ、タスクをサンプリングする。
データ拡張は、クラス毎に利用可能な画像の数を増やすだけでなく、全く新しいクラス/タスクを生成するためにも使用できる。
提案したメタ固有データ拡張は,数ショットの分類ベンチマークにおいて,メタラーナーの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-10-14T13:48:22Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
本稿では,ターゲットドメインからの実際の画像を必要としない新しいデータベース生成手法と,(ii)交通標識のテンプレートを提案する。
この方法は、実際のデータでトレーニングを克服することではなく、実際のデータが利用できない場合に互換性のある代替手段になることを目的としている。
大規模なデータセットでは、完全に合成されたデータセットによるトレーニングは、実際のデータセットとトレーニングのパフォーマンスにほぼ一致する。
論文 参考訳(メタデータ) (2020-07-30T21:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。