Quantum Capacity and Vacuum Compressibility of Spacetime: Thermal Fields
- URL: http://arxiv.org/abs/2204.08634v1
- Date: Tue, 19 Apr 2022 03:32:10 GMT
- Title: Quantum Capacity and Vacuum Compressibility of Spacetime: Thermal Fields
- Authors: Hing-Tong Cho, Jen-Tsung Hsiang and Bei-Lok Hu
- Abstract summary: An important yet perplexing result from work in the 90s and 00s is the near-unity value of the ratio of fluctuations in the vacuum energy density of quantum fields to the mean in a collection of generic spacetimes.
This was done by way of calculating the noise kernels which are the correlators of the stress-energy tensor of quantum fields.
In this paper we revisit this issue via a quantum thermodynamics approach, by calculating two quintessential thermodynamic quantities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An important yet perplexing result from work in the 90s and 00s is the
near-unity value of the ratio of fluctuations in the vacuum energy density of
quantum fields to the mean in a collection of generic spacetimes. This was done
by way of calculating the noise kernels which are the correlators of the
stress-energy tensor of quantum fields. In this paper we revisit this issue via
a quantum thermodynamics approach, by calculating two quintessential
thermodynamic quantities: the heat capacity and the quantum compressibility of
some model geometries filled with a quantum field at high and low temperatures.
This is because heat capacity at constant volume gives a measure of the
fluctuations of the energy density to the mean. When this ratio approaches or
exceeds unity, the validity of the canonical distribution is called into
question. Likewise, a system's compressibility at constant pressure is a
criterion for the validity of grand canonical ensemble. We derive the free
energy density and, from it, obtain the expressions for these two thermodynamic
quantities for thermal and quantum fields in 2d Casimir space, 2d Einstein
cylinder and 4d ($S^1 \times S^3$ ) Einstein universe. To examine the
dependence on the dimensionality of space, for completeness, we have also
derived these thermodynamic quantities for the Einstein universes with
even-spatial dimensions: $S^1 \times S^2$ and $S^1 \times S^4$. With this array
of spacetimes we can investigate the thermodynamic stability of quantum matter
fields in them and make some qualitative observations on the compatibility
condition for the co-existence between quantum fields and spacetimes, a
fundamental issue in the quantum and gravitation conundrum.
Related papers
- Geometry-Information Duality: Quantum Entanglement Contributions to Gravitational Dynamics [0.0]
We propose a fundamental duality between the geometric properties of spacetime and the informational content of quantum fields.
We modify Einstein's field equations by introducing an informational stress-energy tensor derived from quantum entanglement entropy.
Our results indicate that quantum information plays a crucial role in gravitational dynamics.
arXiv Detail & Related papers (2024-09-17T19:28:50Z) - Black Hole from Entropy Maximization [0.0]
One quantum characterization of a black hole motivated by (local) holography and thermodynamics is that it maximizes thermodynamic entropy for a given surface area.
We explore this possibility by solving the 4D semi-classical Einstein equation with many matter fields, and find a picture of a black hole.
For spherical static highly-excited configurations, we apply local typicality and estimate the entropy including self-gravity to derive its upper bound.
arXiv Detail & Related papers (2023-09-01T17:44:24Z) - Quantum thermodynamics of de Sitter space [49.1574468325115]
We consider the local physics of an open quantum system embedded in an expanding three-dimensional space.
For a de Sitter space with Hubble parameter $h = $ const., the background fields act as a physical heat bath.
arXiv Detail & Related papers (2023-07-10T18:00:09Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Thermal Casimir effect in the Einstein Universe with a spherical
boundary [0.0]
We investigate thermal fluctuation corrections to the vacuum energy at zero temperature of a conformally coupled massless scalar field.
At high temperatures, the renormalized Casimir free energy presents classical contributions, along with a logarithmic term.
At low temperatures, it is shown that both the renormalized Casimir free energy and internal energy are dominated by the vacuum energy at zero temperature.
arXiv Detail & Related papers (2022-10-12T12:39:16Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - One-to-one correspondence between entanglement mechanics and black hole
thermodynamics [0.0]
We establish a one-to-one mapping between entanglement entropy, energy, and temperature.
We show this universally for 4-D spherically symmetrically flat and non-flat space-times with single and multiple horizons.
arXiv Detail & Related papers (2020-10-07T13:57:57Z) - The Geometrical Origin of Dark Energy [0.0]
We show that the quantum potential is never trivial, so that it plays the role of intrinsic energy.
The quantum potential also defines the Madelung pressure tensor.
Time independence of the regularized WDW equation suggests that the ratio between the Planck length and the Hubble radius may be a time constant.
arXiv Detail & Related papers (2020-06-21T23:08:40Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.