論文の概要: On the Influence of Explainable AI on Automation Bias
- arxiv url: http://arxiv.org/abs/2204.08859v1
- Date: Tue, 19 Apr 2022 12:54:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 14:45:49.778539
- Title: On the Influence of Explainable AI on Automation Bias
- Title(参考訳): 説明可能なAIが自動化バイアスに及ぼす影響について
- Authors: Max Schemmer, Niklas K\"uhl, Carina Benz, Gerhard Satzger
- Abstract要約: 我々は、説明可能なAI(XAI)によって自動化バイアスに影響を与える可能性に光を当てることを目指している。
ホテルのレビュー分類に関するオンライン実験を行い、最初の結果について議論する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial intelligence (AI) is gaining momentum, and its importance for the
future of work in many areas, such as medicine and banking, is continuously
rising. However, insights on the effective collaboration of humans and AI are
still rare. Typically, AI supports humans in decision-making by addressing
human limitations. However, it may also evoke human bias, especially in the
form of automation bias as an over-reliance on AI advice. We aim to shed light
on the potential to influence automation bias by explainable AI (XAI). In this
pre-test, we derive a research model and describe our study design.
Subsequentially, we conduct an online experiment with regard to hotel review
classifications and discuss first results. We expect our research to contribute
to the design and development of safe hybrid intelligence systems.
- Abstract(参考訳): 人工知能(ai)は勢いを増しており、医療や銀行など多くの分野における仕事の未来における重要性は継続的に高まっている。
しかし、人間とAIの効果的なコラボレーションについての洞察はいまだに稀である。
通常、AIは人間の制限に対処することで人間の意思決定を支援する。
しかし、AIアドバイスへの過度な依存として、特に自動化バイアスという形で、人間の偏見を引き起こすこともある。
我々は、説明可能なAI(XAI)によって自動化バイアスに影響を与える可能性に光を当てることを目指している。
この事前テストでは,研究モデルを導出し,研究設計について述べる。
その後、ホテルレビュー分類に関するオンライン実験を行い、最初の結果について議論する。
我々の研究は、安全なハイブリッドインテリジェンスシステムの設計と開発に貢献することを期待しています。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Bending the Automation Bias Curve: A Study of Human and AI-based
Decision Making in National Security Contexts [0.0]
私たちは、AIに関する背景知識とAIに対する信頼の関係、自動化バイアスの確率に影響を与える他の要因との相互作用について理論を立てています。
我々は、AI産業のレベルが異なる9カ国の9000人の成人の代表例を対象に、事前登録されたタスク識別実験でテストを行った。
論文 参考訳(メタデータ) (2023-06-28T18:57:36Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - BIASeD: Bringing Irrationality into Automated System Design [12.754146668390828]
我々は、人間と機械のコラボレーションの未来は、人間の認知バイアスをモデル化し、理解し、おそらく複製するAIシステムの開発を必要とすると主張している。
我々は、AIシステムの観点から既存の認知バイアスを分類し、3つの幅広い関心領域を特定し、私たちのバイアスをよりよく理解するAIシステムの設計のための研究の方向性を概説する。
論文 参考訳(メタデータ) (2022-10-01T02:52:38Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。