論文の概要: A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets
- arxiv url: http://arxiv.org/abs/2204.08997v1
- Date: Tue, 19 Apr 2022 16:43:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 14:32:44.091832
- Title: A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets
- Title(参考訳): 自動医療相談システムのためのベンチマーク:フレームワーク,タスク,データセット
- Authors: Wei Chen, Zhiwei Li, Hongyi Fang, Qianyuan Yao, Cheng Zhong, Jianye
Hao, Qi Zhang, Xuanjing Huang, J iajie Peng, Zhongyu Wei
- Abstract要約: 本稿では,医師と患者との対話理解とタスク指向インタラクションという,医療相談の自動化を支援する2つの枠組みを提案する。
マルチレベルな微粒なアノテーションを付加した新しい大規模医療対話データセットが導入された。
本稿では,各タスクに対するベンチマーク結果のセットを報告し,データセットのユーザビリティを示し,今後の研究のベースラインを設定する。
- 参考スコア(独自算出の注目度): 70.32630628211803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, interest has arisen in using machine learning to improve the
efficiency of automatic medical consultation and enhance patient experience. In
this paper, we propose two frameworks to support automatic medical
consultation, namely doctor-patient dialogue understanding and task-oriented
interaction. A new large medical dialogue dataset with multi-level fine-grained
annotations is introduced and five independent tasks are established, including
named entity recognition, dialogue act classification, symptom label inference,
medical report generation and diagnosis-oriented dialogue policy. We report a
set of benchmark results for each task, which shows the usability of the
dataset and sets a baseline for future studies.
- Abstract(参考訳): 近年,機械学習による医療相談の効率化や患者体験の向上への関心が高まっている。
本稿では,医師と患者の対話理解とタスク指向インタラクションという,医療相談の自動化を支援する2つの枠組みを提案する。
マルチレベルな微粒なアノテーションを持つ新しい医療対話データセットを導入し、名前付きエンティティ認識、対話行為分類、症状ラベル推論、医療報告生成、診断指向対話ポリシーを含む5つの独立したタスクを確立する。
各タスクに対するベンチマーク結果のセットを報告し,データセットのユーザビリティを示し,今後の研究のベースラインを設定する。
関連論文リスト
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - MediTOD: An English Dialogue Dataset for Medical History Taking with Comprehensive Annotations [23.437292621092823]
本研究は,医学史研究のための英語における医師と患者との対話のデータセットであるMedictoDを紹介する。
医療領域に合わせたアンケートに基づくラベリング手法を考案する。
そして、医療専門家は高品質の包括的なアノテーションでデータセットを作成する。
論文 参考訳(メタデータ) (2024-10-18T06:38:22Z) - A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
患者情報収集作業を自動化する診断対話システムを提案する。
医療史と会話のロジックを活用することで、会話エージェントは複数回にわたる臨床クエリを作成できる。
実世界の医療会話データセットを用いた実験結果から,本モデルが実際の医師の会話スタイルを模倣した臨床クエリを生成できることが示唆された。
論文 参考訳(メタデータ) (2024-10-02T19:32:11Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
アイゲイズガイドマルチモーダルアライメント(EGMA)フレームワークは、アイゲイズデータを利用して、医用視覚的特徴とテキスト的特徴のアライメントを改善する。
我々は4つの医療データセット上で画像分類と画像テキスト検索の下流タスクを行う。
論文 参考訳(メタデータ) (2024-03-19T03:59:14Z) - MedNgage: A Dataset for Understanding Engagement in Patient-Nurse
Conversations [4.847266237348932]
症状を効果的に管理する患者は、医療従事者との会話や介入において、より高いレベルのエンゲージメントを示すことが多い。
AIシステムは、患者と実践者との自然な会話におけるエンゲージメントを理解して、患者のケアにもっと貢献することが不可欠である。
本稿では,がん症状管理に関する患者と看護者の会話をまとめた新しいデータセット(MedNgage)を提案する。
論文 参考訳(メタデータ) (2023-05-31T16:06:07Z) - Medical Dialogue Generation via Dual Flow Modeling [9.328694317877169]
医療対話システム(MDS)は、患者に診断や処方薬などの医療サービスを提供することを目的としている。
これまでの研究は主に、上記医療機関を重要な対話履歴情報として抽出することでこの問題に対処した。
本研究は, 医療機関と医師の対話行動の推移を各ターンで捉えることも重要であると論じる。
論文 参考訳(メタデータ) (2023-05-29T14:23:34Z) - User-Driven Research of Medical Note Generation Software [49.85146209418244]
本稿では,医療用ノート生成システム開発における3ラウンドのユーザスタディについて述べる。
参加する臨床医の印象と,システムがどのようにそれらに価値あるものに適合すべきかの視点について論じる。
遠隔医療における3週間のシステムテストについて述べる。
論文 参考訳(メタデータ) (2022-05-05T10:18:06Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。