One hundred second bit-flip time in a two-photon dissipative oscillator
- URL: http://arxiv.org/abs/2204.09128v1
- Date: Tue, 19 Apr 2022 20:52:11 GMT
- Title: One hundred second bit-flip time in a two-photon dissipative oscillator
- Authors: C. Berdou, A. Murani, U. Reglade, W. C. Smith, M. Villiers, J. Palomo,
M. Rosticher, A. Denis, P. Morfin, M. Delbecq, T. Kontos, N. Pankratova, F.
Rautschke, T. Peronnin, L.-A. Sellem, P. Rouchon, A. Sarlette, M. Mirrahimi,
P. Campagne-Ibarcq, S. Jezouin, R. Lescanne, Z. Leghtas
- Abstract summary: Current implementations of quantum bits (qubits) continue to undergo too many errors to be scaled into useful quantum machines.
An emerging strategy is to encode quantum information in the two meta-stable pointer states of an oscillator exchanging pairs of photons with its environment.
We attain bit-flip times of the order of 100 seconds for states pinned by two-photon dissipation and containing about 40 photons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current implementations of quantum bits (qubits) continue to undergo too many
errors to be scaled into useful quantum machines. An emerging strategy is to
encode quantum information in the two meta-stable pointer states of an
oscillator exchanging pairs of photons with its environment, a mechanism shown
to provide stability without inducing decoherence. Adding photons in these
states increases their separation, and macroscopic bit-flip times are expected
even for a handful of photons, a range suitable to implement a qubit. However,
previous experimental realizations have saturated in the millisecond range. In
this work, we aim for the maximum bit-flip time we could achieve in a
two-photon dissipative oscillator. To this end, we design a Josephson circuit
in a regime that circumvents all suspected dynamical instabilities, and employ
a minimally invasive fluorescence detection tool, at the cost of a two-photon
exchange rate dominated by single-photon loss. We attain bit-flip times of the
order of 100 seconds for states pinned by two-photon dissipation and containing
about 40 photons. This experiment lays a solid foundation from which the
two-photon exchange rate can be gradually increased, thus gaining access to the
preparation and measurement of quantum superposition states, and pursuing the
route towards a logical qubit with built-in bit-flip protection.
Related papers
- Autonomous Stabilization of Fock States in an Oscillator against Multiphoton Losses [10.18499335619556]
dissipation engineering method autonomously stabilizes multi-photon Fock states against losses of multiple photons.
Results highlight potential applications in error-correctable quantum information processing against multi-photon-loss errors.
arXiv Detail & Related papers (2023-08-16T11:58:46Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Cavity-enhanced single-shot readout of a quantum dot spin within 3
nanoseconds [0.45507178426690204]
We demonstrate single-shot readout of a semiconductor quantum dot spin state.
In our approach, semiconductor quantum dots are embedded in an open microcavity.
We achieve single-shot readout of an electron spin state in 3 nanoseconds with a fidelity of (95.2$pm$0.7)%.
arXiv Detail & Related papers (2022-10-25T09:45:49Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - A multipair-free source of entangled photons in the solid state [0.0]
Multiphoton emission commonly reduces the degree of entanglement of photons generated by non-classical light sources.
Quantum emitters have the potential to overcome this hurdle but, so far, the effect of multiphoton emission on the quality of entanglement has never been addressed in detail.
arXiv Detail & Related papers (2022-03-31T14:50:16Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation [0.0]
We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
arXiv Detail & Related papers (2022-01-26T15:34:26Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Two-photon phase-sensing with single-photon detection [0.0]
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit.
We exploit advanced quantum state engineering based on superposing two photon-pair creation events.
We infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode.
arXiv Detail & Related papers (2020-07-06T08:50:37Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.