論文の概要: Multiple EffNet/ResNet Architectures for Melanoma Classification
- arxiv url: http://arxiv.org/abs/2204.10142v1
- Date: Thu, 21 Apr 2022 14:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-22 14:21:57.628077
- Title: Multiple EffNet/ResNet Architectures for Melanoma Classification
- Title(参考訳): メラノーマ分類のための複数EffNet/ResNetアーキテクチャ
- Authors: Jiaqi Xue, Chentian Ma, Li Li, Xuan Wen
- Abstract要約: メラノーマは最も悪性の皮膚腫瘍であり、通常は正常なモルから発生する。
EffNetとResnetに基づくメラノーマ分類モデルを提案する。
当モデルでは, 同一患者の画像だけでなく, 患者レベルの文脈情報も活用し, がんの予測精度の向上を図る。
- 参考スコア(独自算出の注目度): 3.047409448159345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Melanoma is the most malignant skin tumor and usually cancerates from normal
moles, which is difficult to distinguish benign from malignant in the early
stage. Therefore, many machine learning methods are trying to make auxiliary
prediction. However, these methods attach more attention to the image data of
suspected tumor, and focus on improving the accuracy of image classification,
but ignore the significance of patient-level contextual information for disease
diagnosis in actual clinical diagnosis. To make more use of patient information
and improve the accuracy of diagnosis, we propose a new melanoma classification
model based on EffNet and Resnet. Our model not only uses images within the
same patient but also consider patient-level contextual information for better
cancer prediction. The experimental results demonstrated that the proposed
model achieved 0.981 ACC. Furthermore, we note that the overall ROC value of
the model is 0.976 which is better than the previous state-of-the-art
approaches.
- Abstract(参考訳): メラノーマは最も悪性の皮膚腫瘍であり、通常は正常の臼歯から癌になるが、早期の良性と悪性の鑑別は困難である。
そのため、多くの機械学習手法が補助的な予測を試みている。
しかし, これらの手法は, 疑わしい腫瘍の画像データに注意を払い, 画像分類の精度の向上に注力するが, 実際の臨床診断における患者レベルのコンテキスト情報の重要性を無視する。
そこで本研究では,effnetとresnetに基づく新しいメラノーマ分類モデルを提案する。
当モデルでは, 同一患者の画像だけでなく, 患者レベルの文脈情報も検討した。
実験の結果,提案モデルが0.981 ACCを達成した。
さらに、モデル全体のROC値は0.976であり、従来の最先端手法よりも優れていることに留意する。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - A Comparative Analysis Towards Melanoma Classification Using Transfer
Learning by Analyzing Dermoscopic Images [0.0]
本稿では,皮膚病変の分類と診断を可能にするために,深層学習技術と確立された転写学習手法を組み合わせたシステムを提案する。
研究者たちは'Deep Learning'テクニックを使って、膨大な数の写真を訓練し、基本的には期待される結果を得る。
DenseNetは、96.64%のバリデーション精度、9.43%のバリデーション損失、99.63%のテストセット精度など、他のものよりも優れていた。
論文 参考訳(メタデータ) (2023-12-02T19:46:48Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
画像からテキストまでの放射線学レポート生成は,医療画像の発見を記述した放射線学レポートを自動生成することを目的としている。
既存の方法の多くは画像データのみに焦点をあてており、他の患者情報は放射線科医に公開されていない。
胸部X線レポートを生成するための多モードディープニューラルネットワークフレームワークを,非構造的臨床ノートとともにバイタルサインや症状などの構造化された患者データを統合することで提案する。
論文 参考訳(メタデータ) (2023-11-18T14:37:53Z) - Increasing Melanoma Diagnostic Confidence: Forcing the Convolutional
Network to Learn from the Lesion [0.9143713488498512]
EfficientNetモデルによりメラノーマ認識を改善する新しい手法を提案する。
モデルは、ネットワークをトレーニングして、病変を検出し、検出された病変から特徴を学習する。
実験の結果,提案手法は受信機動作特性曲線の平均値(平均AUC)を0.9から0.922に高めることにより,診断精度を向上させた。
論文 参考訳(メタデータ) (2023-05-16T15:34:12Z) - Detection and Localization of Melanoma Skin Cancer in Histopathological
Whole Slide Images [1.0962389869127878]
皮膚がんの発生が予想される増加と皮膚病理学者の足跡は、計算病理学(CPATH)システムの必要性を強調している。
本論文は,WSI(Whole Slide Images)における悪性黒色腫の検出と正常皮膚と良性悪性黒色腫病変の鑑別のためのDL法を提案する。
本手法は, 病変を高精度に検出し, 病理医の関心領域を特定するためにWSI上に局在する。
論文 参考訳(メタデータ) (2023-02-06T18:54:14Z) - Efficient Out-of-Distribution Detection of Melanoma with Wavelet-based
Normalizing Flows [22.335623464185105]
メラノーマは皮膚がんの重篤な形態であり、後期の死亡率が高い。
データセットは非常に不均衡であり、最先端の教師付きAIモデルのトレーニングを複雑にします。
本稿では, 生成モデルを用いて良性データ分布を学習し, 密度推定による悪性画像の検出を提案する。
論文 参考訳(メタデータ) (2022-08-09T09:57:56Z) - Visualizing CoAtNet Predictions for Aiding Melanoma Detection [0.0]
本稿では,CoAtNetアーキテクチャを用いたマルチクラス分類タスクを提案する。
全体的な精度は0.901, 0.895, AP 0.923で、他の最先端ネットワークと比較して高い性能を示している。
論文 参考訳(メタデータ) (2022-05-21T06:41:52Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
医用画像の特徴に対処する枠組みを提案する。
このモデルはまず、画像全体の低容量だがメモリ効率のよいネットワークを使用して、最も情報性の高い領域を識別する。
次に、選択したリージョンから詳細を収集するために、別の高容量ネットワークを適用します。
最後に、グローバルおよびローカル情報を集約して最終的な予測を行うフュージョンモジュールを使用する。
論文 参考訳(メタデータ) (2020-02-13T15:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。