論文の概要: Visualizing CoAtNet Predictions for Aiding Melanoma Detection
- arxiv url: http://arxiv.org/abs/2205.10515v1
- Date: Sat, 21 May 2022 06:41:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-05 17:46:30.379017
- Title: Visualizing CoAtNet Predictions for Aiding Melanoma Detection
- Title(参考訳): メラノーマ検出支援のためのCoAtNet予測の可視化
- Authors: Daniel Kvak
- Abstract要約: 本稿では,CoAtNetアーキテクチャを用いたマルチクラス分類タスクを提案する。
全体的な精度は0.901, 0.895, AP 0.923で、他の最先端ネットワークと比較して高い性能を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Melanoma is considered to be the most aggressive form of skin cancer. Due to
the similar shape of malignant and benign cancerous lesions, doctors spend
considerably more time when diagnosing these findings. At present, the
evaluation of malignancy is performed primarily by invasive histological
examination of the suspicious lesion. Developing an accurate classifier for
early and efficient detection can minimize and monitor the harmful effects of
skin cancer and increase patient survival rates. This paper proposes a
multi-class classification task using the CoAtNet architecture, a hybrid model
that combines the depthwise convolution matrix operation of traditional
convolutional neural networks with the strengths of Transformer models and
self-attention mechanics to achieve better generalization and capacity. The
proposed multi-class classifier achieves an overall precision of 0.901, recall
0.895, and AP 0.923, indicating high performance compared to other
state-of-the-art networks.
- Abstract(参考訳): メラノーマは最も攻撃的な皮膚癌であると考えられている。
悪性および良性癌の類似した形態のため、医師はこれらの所見を診断する際にかなり多くの時間を費やす。
現在, 悪性度の評価は, 不審な病変の浸潤組織学的検討が主である。
早期かつ効率的な検出のための正確な分類器の開発は、皮膚がんの有害な影響を最小化し、監視し、患者の生存率を高めることができる。
本稿では,従来の畳み込みニューラルネットワークの深い畳み込み行列操作とトランスフォーマーモデルと自己注意機構の強みを組み合わせたハイブリッドモデルであるCoAtNetアーキテクチャを用いたマルチクラス分類タスクを提案する。
提案したマルチクラス分類器は0.901, 0.895, AP 0.923の総合精度を実現し, 他の最先端ネットワークと比較して高い性能を示した。
関連論文リスト
- Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
本研究では、トランスフォーマーと畳み込みニューラルネットワーク(CNN)の利点を組み合わせて分類性能を向上させるハイブリッドモデルを提案する。
GastroVisionデータセットでは,精度,リコール,F1スコア,精度,マシューズ相関係数(MCC)が0.8320,0.8386,0.8324,0.8386,0.8191であった。
論文 参考訳(メタデータ) (2024-08-20T11:05:32Z) - Hybrid Deep Learning Framework for Enhanced Melanoma Detection [3.004788114489393]
本研究の目的は, メラノーマ検出の精度と効率を, 革新的なハイブリッドアプローチにより向上させることである。
我々は、HAM10000データセットを使用して、U-Netモデルを綿密に訓練し、癌領域を正確に分類することができる。
我々はISIC 2020データセットを用いてEfficientNetモデルをトレーニングし、皮膚がんのバイナリ分類に最適化する。
論文 参考訳(メタデータ) (2024-07-16T04:58:47Z) - Breast Cancer Image Classification Method Based on Deep Transfer Learning [40.392772795903795]
深層学習と転写学習を組み合わせた乳癌画像分類モデルを提案する。
実験結果から, アルゴリズムは, 従来のモデルに比べて分類精度が有意に向上し, テストセットの84.0%以上の効率を達成することが示された。
論文 参考訳(メタデータ) (2024-04-14T12:09:47Z) - Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models [0.6827423171182154]
ディープ畳み込みニューラルネットワーク(CNN)は、データと画像の分類に優れた可能性を示している。
本稿では,CNNを用いた皮膚病変分類問題について検討する。
本研究では, 転写学習の枠組みを適切に設計し, 適用することにより, 病変検出の顕著な分類精度を得ることができることを示す。
論文 参考訳(メタデータ) (2024-04-01T15:06:20Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Efficient Out-of-Distribution Detection of Melanoma with Wavelet-based
Normalizing Flows [22.335623464185105]
メラノーマは皮膚がんの重篤な形態であり、後期の死亡率が高い。
データセットは非常に不均衡であり、最先端の教師付きAIモデルのトレーニングを複雑にします。
本稿では, 生成モデルを用いて良性データ分布を学習し, 密度推定による悪性画像の検出を提案する。
論文 参考訳(メタデータ) (2022-08-09T09:57:56Z) - Multiple EffNet/ResNet Architectures for Melanoma Classification [3.047409448159345]
メラノーマは最も悪性の皮膚腫瘍であり、通常は正常なモルから発生する。
EffNetとResnetに基づくメラノーマ分類モデルを提案する。
当モデルでは, 同一患者の画像だけでなく, 患者レベルの文脈情報も活用し, がんの予測精度の向上を図る。
論文 参考訳(メタデータ) (2022-04-21T14:46:55Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。