論文の概要: How Conservative are Language Models? Adapting to the Introduction of
Gender-Neutral Pronouns
- arxiv url: http://arxiv.org/abs/2204.10281v1
- Date: Mon, 11 Apr 2022 09:42:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-24 18:02:11.151167
- Title: How Conservative are Language Models? Adapting to the Introduction of
Gender-Neutral Pronouns
- Title(参考訳): 言語モデルはどの程度保守的か?
性中立代名詞の導入に適応する
- Authors: Stephanie Brandl, Ruixiang Cui, Anders S{\o}gaard
- Abstract要約: スウェーデン語では、ジェンダーニュートラル代名詞は、人間の処理困難とは無関係であることを示す。
デンマーク語、英語、スウェーデン語のジェンダーニュートラル代名詞は、より難易度が高く、注意パターンが分散し、下流のパフォーマンスが悪化していることを示す。
- 参考スコア(独自算出の注目度): 0.15293427903448023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gender-neutral pronouns have recently been introduced in many languages to a)
include non-binary people and b) as a generic singular. Recent results from
psycho-linguistics suggest that gender-neutral pronouns (in Swedish) are not
associated with human processing difficulties. This, we show, is in sharp
contrast with automated processing. We show that gender-neutral pronouns in
Danish, English, and Swedish are associated with higher perplexity, more
dispersed attention patterns, and worse downstream performance. We argue that
such conservativity in language models may limit widespread adoption of
gender-neutral pronouns and must therefore be resolved.
- Abstract(参考訳): 性中立代名詞は最近多くの言語で導入されている。
a)非バイナリの人々を含み、
b) 一般特異点として。
最近の精神言語学の結果から、性中立代名詞(スウェーデン語)は人間の処理困難とは関係がないことが示唆されている。
これは、自動処理とは対照的である。
デンマーク語、英語、スウェーデン語のジェンダーニュートラル代名詞は、より難易度が高く、注意パターンが分散し、下流のパフォーマンスが悪化していることを示す。
このような言語モデルにおける保守性は、性中立代名詞の広範な採用を制限し、それゆえ解決しなければならないと主張する。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - What an Elegant Bridge: Multilingual LLMs are Biased Similarly in Different Languages [51.0349882045866]
本稿では,Large Language Models (LLMs) の文法的ジェンダーのレンズによるバイアスについて検討する。
様々な言語における形容詞を持つ名詞を記述するためのモデルを提案し,特に文法性のある言語に焦点を当てた。
単純な分類器は、偶然以上の名詞の性別を予測できるだけでなく、言語間の移動可能性も示せる。
論文 参考訳(メタデータ) (2024-07-12T22:10:16Z) - Building Bridges: A Dataset for Evaluating Gender-Fair Machine Translation into German [17.924716793621627]
英独機械翻訳(MT)におけるジェンダーフェア言語の研究
2つの商用システムと6つのニューラルMTモデルを含む最初のベンチマーク研究を行う。
以上の結果から,ほとんどのシステムでは男性型が主流であり,性別ニュートラル変種は稀である。
論文 参考訳(メタデータ) (2024-06-10T09:39:19Z) - Transforming Dutch: Debiasing Dutch Coreference Resolution Systems for Non-binary Pronouns [5.5514102920271196]
ジェンダーニュートラルな代名詞は、西欧語で導入されつつある。
最近の評価では、英語のNLPシステムはジェンダーニュートラル代名詞を正しく処理できないことが示されている。
本稿では,オランダ語の男女中性代名詞に対する基準分解システムの性能について検討する。
論文 参考訳(メタデータ) (2024-04-30T18:31:19Z) - The Causal Influence of Grammatical Gender on Distributional Semantics [87.8027818528463]
言語間のジェンダー割り当てがどの程度意味を持つかは、言語学と認知科学における研究の活発な領域である。
我々は、名詞の文法的性別、意味、形容詞選択の間の相互作用を共同で表現する、新しい因果的グラフィカルモデルを提供する。
名詞の意味を制御した場合、文法的性別と形容詞的選択の関係は、ほぼゼロであり、無意味である。
論文 参考訳(メタデータ) (2023-11-30T13:58:13Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - MISGENDERED: Limits of Large Language Models in Understanding Pronouns [46.276320374441056]
我々は、英語のジェンダーニュートラル代名詞を正しく活用する能力について、人気言語モデルの評価を行った。
提案するMISGENDEREDは,大言語モデルが好む代名詞を正しく活用する能力を評価するためのフレームワークである。
論文 参考訳(メタデータ) (2023-06-06T18:27:52Z) - What about em? How Commercial Machine Translation Fails to Handle
(Neo-)Pronouns [26.28827649737955]
単語代名詞の翻訳は、例えば非バイナリな個人など、余分に分類されたグループに対して区別することができる。
3つの商用機械翻訳システムが3人称代名詞の翻訳方法を検討する。
我々の誤り分析は、性中立代名詞の存在が文法的・意味的な翻訳誤りにつながることをしばしば示している。
論文 参考訳(メタデータ) (2023-05-25T13:34:09Z) - Welcome to the Modern World of Pronouns: Identity-Inclusive Natural
Language Processing beyond Gender [23.92148222207458]
自然言語処理における3人称代名詞問題の概要について概説する。
既存および新規なモデリング手法の評価を行う。
我々は、より差別のないアプローチが確立されたベンチマークデータに与える影響を定量化する。
論文 参考訳(メタデータ) (2022-02-24T06:42:11Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。