Learning to Fold Real Garments with One Arm: A Case Study in Cloud-Based
Robotics Research
- URL: http://arxiv.org/abs/2204.10297v1
- Date: Thu, 21 Apr 2022 17:31:20 GMT
- Title: Learning to Fold Real Garments with One Arm: A Case Study in Cloud-Based
Robotics Research
- Authors: Ryan Hoque, Kaushik Shivakumar, Shrey Aeron, Gabriel Deza, Aditya
Ganapathi, Adrian Wong, Johnny Lee, Andy Zeng, Vincent Vanhoucke, Ken
Goldberg
- Abstract summary: We present the first systematic benchmarking of fabric manipulation algorithms on physical hardware.
We develop 4 novel learning-based algorithms that model expert actions, keypoints, reward functions, and dynamic motions.
The entire lifecycle of data collection, model training, and policy evaluation is performed remotely without physical access to the robot workcell.
- Score: 21.200764836237497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous fabric manipulation is a longstanding challenge in robotics, but
evaluating progress is difficult due to the cost and diversity of robot
hardware. Using Reach, a cloud robotics platform that enables low-latency
remote execution of control policies on physical robots, we present the first
systematic benchmarking of fabric manipulation algorithms on physical hardware.
We develop 4 novel learning-based algorithms that model expert actions,
keypoints, reward functions, and dynamic motions, and we compare these against
4 learning-free and inverse dynamics algorithms on the task of folding a
crumpled T-shirt with a single robot arm. The entire lifecycle of data
collection, model training, and policy evaluation is performed remotely without
physical access to the robot workcell. Results suggest a new algorithm
combining imitation learning with analytic methods achieves 84% of human-level
performance on the folding task. See
https://sites.google.com/berkeley.edu/cloudfolding for all data, code, models,
and supplemental material.
Related papers
- Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
We present a novel black-box policy search algorithm focused on data-efficient policy improvements.
The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process.
We show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
arXiv Detail & Related papers (2024-11-21T15:52:23Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Quality-Diversity Optimisation on a Physical Robot Through
Dynamics-Aware and Reset-Free Learning [4.260312058817663]
We build upon the Reset-Free QD (RF-QD) algorithm to learn controllers directly on a physical robot.
This method uses a dynamics model, learned from interactions between the robot and the environment, to predict the robot's behaviour.
RF-QD also includes a recovery policy that returns the robot to a safe zone when it has walked outside of it, allowing continuous learning.
arXiv Detail & Related papers (2023-04-24T13:24:00Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning
During Deployment [25.186525630548356]
Sirius is a principled framework for humans and robots to collaborate through a division of work.
Partially autonomous robots are tasked with handling a major portion of decision-making where they work reliably.
We introduce a new learning algorithm to improve the policy's performance on the data collected from the task executions.
arXiv Detail & Related papers (2022-11-15T18:53:39Z) - Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum
Learning Study [4.045850174820418]
This paper presents a study for accelerating robot learning of contact-rich manipulation tasks based on Curriculum Learning combined with Domain Randomization (DR)
We tackle complex industrial assembly tasks with position-controlled robots, such as insertion tasks.
Results also show that even when training only in simulation with toy tasks, our method can learn policies that can be transferred to the real-world robot.
arXiv Detail & Related papers (2022-04-27T11:08:39Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks [0.0]
Reinforcement learning has been successfully applied to solving the reaching task with robotic arms.
It is shown that augmenting the reward signal with the Hindsight Experience Replay exploration technique increases the average return of off-policy agents.
arXiv Detail & Related papers (2020-11-11T14:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.