Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning
During Deployment
- URL: http://arxiv.org/abs/2211.08416v3
- Date: Tue, 4 Jul 2023 00:03:55 GMT
- Title: Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning
During Deployment
- Authors: Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, Yuke Zhu
- Abstract summary: Sirius is a principled framework for humans and robots to collaborate through a division of work.
Partially autonomous robots are tasked with handling a major portion of decision-making where they work reliably.
We introduce a new learning algorithm to improve the policy's performance on the data collected from the task executions.
- Score: 25.186525630548356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid growth of computing powers and recent advances in deep
learning, we have witnessed impressive demonstrations of novel robot
capabilities in research settings. Nonetheless, these learning systems exhibit
brittle generalization and require excessive training data for practical tasks.
To harness the capabilities of state-of-the-art robot learning models while
embracing their imperfections, we present Sirius, a principled framework for
humans and robots to collaborate through a division of work. In this framework,
partially autonomous robots are tasked with handling a major portion of
decision-making where they work reliably; meanwhile, human operators monitor
the process and intervene in challenging situations. Such a human-robot team
ensures safe deployments in complex tasks. Further, we introduce a new learning
algorithm to improve the policy's performance on the data collected from the
task executions. The core idea is re-weighing training samples with
approximated human trust and optimizing the policies with weighted behavioral
cloning. We evaluate Sirius in simulation and on real hardware, showing that
Sirius consistently outperforms baselines over a collection of contact-rich
manipulation tasks, achieving an 8% boost in simulation and 27% on real
hardware than the state-of-the-art methods in policy success rate, with twice
faster convergence and 85% memory size reduction. Videos and more details are
available at https://ut-austin-rpl.github.io/sirius/
Related papers
- Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
We present a novel black-box policy search algorithm focused on data-efficient policy improvements.
The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process.
We show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
arXiv Detail & Related papers (2024-11-21T15:52:23Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Learning to Fold Real Garments with One Arm: A Case Study in Cloud-Based
Robotics Research [21.200764836237497]
We present the first systematic benchmarking of fabric manipulation algorithms on physical hardware.
We develop 4 novel learning-based algorithms that model expert actions, keypoints, reward functions, and dynamic motions.
The entire lifecycle of data collection, model training, and policy evaluation is performed remotely without physical access to the robot workcell.
arXiv Detail & Related papers (2022-04-21T17:31:20Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Reinforcement Learning Experiments and Benchmark for Solving Robotic
Reaching Tasks [0.0]
Reinforcement learning has been successfully applied to solving the reaching task with robotic arms.
It is shown that augmenting the reward signal with the Hindsight Experience Replay exploration technique increases the average return of off-policy agents.
arXiv Detail & Related papers (2020-11-11T14:00:49Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.