論文の概要: Improving the Generalizability of Depression Detection by Leveraging
Clinical Questionnaires
- arxiv url: http://arxiv.org/abs/2204.10432v1
- Date: Thu, 21 Apr 2022 22:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-25 13:21:16.191376
- Title: Improving the Generalizability of Depression Detection by Leveraging
Clinical Questionnaires
- Title(参考訳): 臨床アンケートの活用によるうつ病検出の汎用性の向上
- Authors: Thong Nguyen, Andrew Yates, Ayah Zirikly, Bart Desmet, Arman Cohan
- Abstract要約: PHQ9に記載された症状の存在により,異なる度合いに制約されたうつ病検出のためのアプローチを提案する。
3つのソーシャルメディアデータセットのデータセット転送実験において、PHQ9の症状をモデルとしてグラウンド化することで、その一般化能力が大幅に向上することがわかった。
- 参考スコア(独自算出の注目度): 26.302025988210936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated methods have been widely used to identify and analyze mental health
conditions (e.g., depression) from various sources of information, including
social media. Yet, deployment of such models in real-world healthcare
applications faces challenges including poor out-of-domain generalization and
lack of trust in black box models. In this work, we propose approaches for
depression detection that are constrained to different degrees by the presence
of symptoms described in PHQ9, a questionnaire used by clinicians in the
depression screening process. In dataset-transfer experiments on three social
media datasets, we find that grounding the model in PHQ9's symptoms
substantially improves its ability to generalize to out-of-distribution data
compared to a standard BERT-based approach. Furthermore, this approach can
still perform competitively on in-domain data. These results and our
qualitative analyses suggest that grounding model predictions in
clinically-relevant symptoms can improve generalizability while producing a
model that is easier to inspect.
- Abstract(参考訳): 自動化された手法は、ソーシャルメディアを含む様々な情報ソースから精神状態(うつ病など)を特定し分析するために広く用いられてきた。
しかし、そのようなモデルを現実世界の医療アプリケーションに展開することは、ドメイン外一般化の貧弱さやブラックボックスモデルの信頼の欠如など、課題に直面している。
本研究では, うつ病検診において臨床医が用いた, PHQ9 の症状の有無によって, 異なる度合いに制約されたうつ病検出手法を提案する。
3つのソーシャルメディアデータセットのデータセット転送実験において、PHQ9の症状をベースとしたモデルでは、標準的なBERTベースのアプローチに比べて、配信外データへの一般化能力が大幅に向上することが判明した。
さらに、このアプローチはドメイン内データで競争力を保てる。
これらの結果と質的分析から,臨床症状における接地モデル予測は,検査が容易なモデルの作成にともなう汎用性の向上につながることが示唆された。
関連論文リスト
- Assessing ML Classification Algorithms and NLP Techniques for Depression Detection: An Experimental Case Study [0.6524460254566905]
うつ病は世界中で何百万人もの人々に影響を与えており、最も一般的な精神疾患の1つとなっている。
近年の研究では、機械学習(ML)と自然言語処理(NLP)のツールや技術がうつ病の診断に広く用いられていることが証明されている。
しかし, 外傷後ストレス障害 (PTSD) などの他の症状が存在するうつ病検出アプローチの評価には, 依然としていくつかの課題がある。
論文 参考訳(メタデータ) (2024-04-03T19:45:40Z) - Mental Health Diagnosis in the Digital Age: Harnessing Sentiment
Analysis on Social Media Platforms upon Ultra-Sparse Feature Content [3.6195994708545016]
3次元構造を持つ新しい意味的特徴前処理手法を提案する。
強化されたセマンティック機能により、精神障害を予測および分類するために機械学習モデルを訓練する。
提案手法は,7つのベンチマークモデルと比較して,大幅な性能向上を示した。
論文 参考訳(メタデータ) (2023-11-09T00:15:06Z) - Harnessing the Power of Hugging Face Transformers for Predicting Mental
Health Disorders in Social Networks [0.0]
本研究では、ユーザ生成データを用いて精神疾患の症状を予測する方法について検討する。
本研究は,Hugging Faceの4種類のBERTモデルと標準的な機械学習技術を比較した。
新しいモデルは、最大97%の精度で以前のアプローチより優れている。
論文 参考訳(メタデータ) (2023-06-29T12:25:19Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
データから現実的な拡張を自動的に学習することは、生成モデルを用いてラベル効率の良い方法で可能であることを示す。
これらの学習の強化は、モデルをより堅牢で統計的に公平に配布できることを示した。
論文 参考訳(メタデータ) (2023-04-18T18:15:38Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
我々は,抑うつ,抑うつ症状,および,胸腺で収集された音声,表情,認知ゲームデータから得られる特徴の関連性を把握するためにベイズ的枠組みを適用した。
論文 参考訳(メタデータ) (2022-11-09T14:48:13Z) - Deep Temporal Modelling of Clinical Depression through Social Media Text [1.513693945164213]
ユーザの時間的ソーシャルメディア投稿に基づいて,ユーザレベルの臨床うつ病を検出するモデルを構築した。
本モデルでは,うつ病症状に対する医用注釈付きツイートの最大のサンプルをもとに訓練した,うつ病検出(DSD)分類器を用いた。
論文 参考訳(メタデータ) (2022-10-28T18:31:52Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。