論文の概要: Energy-efficient and Privacy-aware Social Distance Monitoring with
Low-resolution Infrared Sensors and Adaptive Inference
- arxiv url: http://arxiv.org/abs/2204.10539v1
- Date: Fri, 22 Apr 2022 07:07:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-25 14:26:09.103762
- Title: Energy-efficient and Privacy-aware Social Distance Monitoring with
Low-resolution Infrared Sensors and Adaptive Inference
- Title(参考訳): 低分解能赤外線センサと適応推論を用いたエネルギー効率とプライバシーを考慮した社会距離モニタリング
- Authors: Chen Xie, Daniele Jahier Pagliari, Andrea Calimera
- Abstract要約: 低分解能赤外線センサを利用して、屋内空間におけるプライバシー保護社会距離監視ソリューションを実装できる。
簡単な起動トリガと8ビット量子化畳み込みニューラルネットワーク(CNN)のカスケードで構成されるエネルギー効率の良い適応型推論ソリューションを提案する。
8x8の低分解能赤外線センサの出力を処理すると、静的CNNベースのアプローチでエネルギー消費量を37~57%削減できることを示す。
- 参考スコア(独自算出の注目度): 4.158182639870093
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Low-resolution infrared (IR) Sensors combined with machine learning (ML) can
be leveraged to implement privacy-preserving social distance monitoring
solutions in indoor spaces. However, the need of executing these applications
on Internet of Things (IoT) edge nodes makes energy consumption critical. In
this work, we propose an energy-efficient adaptive inference solution
consisting of the cascade of a simple wake-up trigger and a 8-bit quantized
Convolutional Neural Network (CNN), which is only invoked for
difficult-to-classify frames. Deploying such adaptive system on a IoT
Microcontroller, we show that, when processing the output of a 8x8
low-resolution IR sensor, we are able to reduce the energy consumption by
37-57% with respect to a static CNN-based approach, with an accuracy drop of
less than 2% (83% balanced accuracy).
- Abstract(参考訳): 低解像度赤外線センサと機械学習(ML)を組み合わせることで、屋内空間におけるプライバシー保護型ソーシャル距離監視ソリューションを実現することができる。
しかし、IoT(Internet of Things)エッジノード上でこれらのアプリケーションを実行する必要性は、エネルギー消費を重要視している。
本研究では、単純な起動トリガのカスケードと、8ビット量子化畳み込みニューラルネットワーク(CNN)からなるエネルギー効率のよい適応型推論ソリューションを提案する。
このような適応システムをIoTマイクロコントローラに展開することにより、8x8の低分解能IRセンサの出力を処理する場合、静的CNNベースのアプローチに対してエネルギー消費量を37~57%削減でき、精度は2%未満(バランスの取れた精度は83%)であることを示す。
関連論文リスト
- A Cloud-Edge Framework for Energy-Efficient Event-Driven Control: An Integration of Online Supervised Learning, Spiking Neural Networks and Local Plasticity Rules [0.0]
本稿では,複雑な制御系における計算とエネルギーの制約に対処する新しいクラウドエッジフレームワークを提案する。
生物学的に妥当な学習法を局所的可塑性規則と組み合わせることで、スパイキングニューラルネットワーク(SNN)の効率性、スケーラビリティ、低レイテンシを活用する。
この設計は、植物に直接クラウドベースのコントローラからの制御信号を複製し、絶え間なく植物とクラウドの通信が不要になる。
論文 参考訳(メタデータ) (2024-04-12T22:34:17Z) - HW-SW Optimization of DNNs for Privacy-preserving People Counting on
Low-resolution Infrared Arrays [9.806742394395322]
低分解能赤外線(IR)アレイセンサは、空間や人の流れの占有をモニターするなどのアプリケーションを数えることができる。
ディープニューラルネットワーク(DNN)は、これらのセンサデータを正確かつ効率的な方法で処理するのに適していることが示されている。
本稿では、ニューラルネットワーク探索、混合精度量子化、後処理といったDNNのための高度に自動化されたフルスタック最適化フローを提案する。
論文 参考訳(メタデータ) (2024-02-02T08:45:38Z) - Speck: A Smart event-based Vision Sensor with a low latency 327K Neuron Convolutional Neuronal Network Processing Pipeline [5.8859061623552975]
我々は、イベントベースのカメラと低消費電力非同期スパイク畳み込みニューラルネットワーク(sCNN)コンピューティングアーキテクチャを単一チップ上に組み込んだ、チップ上のスマートビジョンセンサシステム(SoC)を提案する。
センサと処理を1つのダイに組み合わせることで、ユニット生産コストを大幅に削減できる。
非同期アーキテクチャ、個々のブロック、およびsCNN処理原理と他のsCNN対応プロセッサに対するベンチマークを示す。
論文 参考訳(メタデータ) (2023-04-13T19:28:57Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Privacy-preserving Social Distance Monitoring on Microcontrollers with
Low-Resolution Infrared Sensors and CNNs [10.80166668204102]
低解像度赤外線アレイセンサーは、光学カメラやスマートフォン/ウェアラブルに代わり、低コスト、低消費電力、プライバシー保護を提供する。
小型畳み込みニューラルネットワーク(CNN)を用いた8x8 IRアレイセンサの生出力を精度良く検出できることを実証した。
我々は,最も優れたCNNが86.3%のバランスの取れた精度を達成し,最先端の決定論的アルゴリズムによって達成された61%を著しく上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-22T07:17:45Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Robustifying the Deployment of tinyML Models for Autonomous
mini-vehicles [61.27933385742613]
本稿では,ループ内環境を含む自動運転ミニ車両を対象とした閉ループ学習フローを提案する。
我々は、小型CNNのファミリーを利用してミニ車両を制御し、コンピュータビジョンアルゴリズム、すなわち専門家を模倣してターゲット環境で学習する。
CNNのファミリを実行する場合、我々のソリューションはSTM32L4とk64f(Cortex-M4)の他の実装よりも優れており、レイテンシを13倍以上削減し、エネルギー消費を92%削減する。
論文 参考訳(メタデータ) (2020-07-01T07:54:26Z) - Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection [99.94079901071163]
本稿では、ダイナミックビジョンセンサ(DVS)を用いた歩行者検出のための新しいエンドツーエンドシステムを提案する。
我々は、複数のセンサがローカル処理ユニットにデータを送信し、検出アルゴリズムを実行するアプリケーションをターゲットにしている。
我々の検出器は450ミリ秒毎に検出を行うことができ、総合的なテストF1スコアは83%である。
論文 参考訳(メタデータ) (2020-04-03T17:36:26Z) - Convolutional-Recurrent Neural Networks on Low-Power Wearable Platforms
for Cardiac Arrhythmia Detection [0.18459705687628122]
マイクロコントローラと低消費電力プロセッサで動作するニューラルネットワークの推論に焦点を当てる。
心不整脈を検出・分類するために既存の畳み込みリカレントニューラルネットワークを適用した。
メモリフットプリントは195.6KB、スループットは33.98MOps/sである。
論文 参考訳(メタデータ) (2020-01-08T10:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。