論文の概要: HW-SW Optimization of DNNs for Privacy-preserving People Counting on
Low-resolution Infrared Arrays
- arxiv url: http://arxiv.org/abs/2402.01226v1
- Date: Fri, 2 Feb 2024 08:45:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 16:14:14.127115
- Title: HW-SW Optimization of DNNs for Privacy-preserving People Counting on
Low-resolution Infrared Arrays
- Title(参考訳): 低分解能赤外線アレイを用いたプライバシー保護のためのDNNのHW-SW最適化
- Authors: Matteo Risso, Chen Xie, Francesco Daghero, Alessio Burrello,
Seyedmorteza Mollaei, Marco Castellano, Enrico Macii, Massimo Poncino,
Daniele Jahier Pagliari
- Abstract要約: 低分解能赤外線(IR)アレイセンサは、空間や人の流れの占有をモニターするなどのアプリケーションを数えることができる。
ディープニューラルネットワーク(DNN)は、これらのセンサデータを正確かつ効率的な方法で処理するのに適していることが示されている。
本稿では、ニューラルネットワーク探索、混合精度量子化、後処理といったDNNのための高度に自動化されたフルスタック最適化フローを提案する。
- 参考スコア(独自算出の注目度): 9.806742394395322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-resolution infrared (IR) array sensors enable people counting
applications such as monitoring the occupancy of spaces and people flows while
preserving privacy and minimizing energy consumption. Deep Neural Networks
(DNNs) have been shown to be well-suited to process these sensor data in an
accurate and efficient manner. Nevertheless, the space of DNNs' architectures
is huge and its manual exploration is burdensome and often leads to sub-optimal
solutions. To overcome this problem, in this work, we propose a highly
automated full-stack optimization flow for DNNs that goes from neural
architecture search, mixed-precision quantization, and post-processing, down to
the realization of a new smart sensor prototype, including a Microcontroller
with a customized instruction set. Integrating these cross-layer optimizations,
we obtain a large set of Pareto-optimal solutions in the 3D-space of energy,
memory, and accuracy. Deploying such solutions on our hardware platform, we
improve the state-of-the-art achieving up to 4.2x model size reduction, 23.8x
code size reduction, and 15.38x energy reduction at iso-accuracy.
- Abstract(参考訳): 低分解能赤外線(IR)アレイセンサは、プライバシーを守りエネルギー消費を最小限に抑えながら、空間や人々の流れの占有をモニターするなどのアプリケーションを数えることができる。
ディープニューラルネットワーク(DNN)は、これらのセンサデータを正確かつ効率的に処理するのに適していることが示されている。
それでも、DNNのアーキテクチャの空間は巨大であり、手作業による探索は重荷になり、しばしば準最適解につながる。
この問題を解決するため,本研究では,ニューラルネットワーク探索,混合精度量子化,後処理から,カスタマイズした命令セットを備えたマイクロコントローラを含む新しいスマートセンサプロトタイプの実現まで,高度に自動化されたdnnのフルスタック最適化フローを提案する。
これらの層間最適化を統合することで,エネルギー,メモリ,精度の3次元空間におけるパレート最適解の集合が得られる。
ハードウェアプラットフォームにそのようなソリューションをデプロイすることで,最大4.2倍のモデルサイズ削減,23.8倍のコードサイズ削減,およびアイソ精度での15.38倍のエネルギー削減を実現した。
関連論文リスト
- LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - PLiNIO: A User-Friendly Library of Gradient-based Methods for
Complexity-aware DNN Optimization [3.460496851517031]
PLiNIOは、最先端のDNN設計自動化技術を包括的に実装したオープンソースライブラリである。
PLiNIOは、ベースラインアーキテクチャと比較して最大94.34%のメモリ削減を実現し、1%の精度低下を実現している。
論文 参考訳(メタデータ) (2023-07-18T07:11:14Z) - Speck: A Smart event-based Vision Sensor with a low latency 327K Neuron Convolutional Neuronal Network Processing Pipeline [5.8859061623552975]
我々は、イベントベースのカメラと低消費電力非同期スパイク畳み込みニューラルネットワーク(sCNN)コンピューティングアーキテクチャを単一チップ上に組み込んだ、チップ上のスマートビジョンセンサシステム(SoC)を提案する。
センサと処理を1つのダイに組み合わせることで、ユニット生産コストを大幅に削減できる。
非同期アーキテクチャ、個々のブロック、およびsCNN処理原理と他のsCNN対応プロセッサに対するベンチマークを示す。
論文 参考訳(メタデータ) (2023-04-13T19:28:57Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - Energy-efficient and Privacy-aware Social Distance Monitoring with
Low-resolution Infrared Sensors and Adaptive Inference [4.158182639870093]
低分解能赤外線センサを利用して、屋内空間におけるプライバシー保護社会距離監視ソリューションを実装できる。
簡単な起動トリガと8ビット量子化畳み込みニューラルネットワーク(CNN)のカスケードで構成されるエネルギー効率の良い適応型推論ソリューションを提案する。
8x8の低分解能赤外線センサの出力を処理すると、静的CNNベースのアプローチでエネルギー消費量を37~57%削減できることを示す。
論文 参考訳(メタデータ) (2022-04-22T07:07:38Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Automated Design Space Exploration for optimised Deployment of DNN on
Arm Cortex-A CPUs [13.628734116014819]
組み込みデバイスにおけるディープラーニングは、ディープニューラルネットワーク(DNN)のデプロイを最適化する多くの方法の開発を促している。
テストし、グローバルに最適化されたソリューションを得るには、アプローチの空間が大きすぎるため、クロスレベル最適化に関する研究が不足している。
我々は、Arm Cortex-A CPUプラットフォーム上での最先端DNNの一連の結果を示し、最大4倍の性能向上とメモリの2倍以上の削減を実現した。
論文 参考訳(メタデータ) (2020-06-09T11:00:06Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
モバイルエッジデバイスの限られたストレージとコンピューティング能力を満たすために、ディープニューラルネットワーク(DNN)の軽量プルーニングが提案されている。
従来のプルーニング手法は主に、ユーザデータのプライバシを考慮せずに、モデルのサイズを減らしたり、パフォーマンスを向上させることに重点を置いていた。
プライベートトレーニングデータセットを必要としないプライバシ保護指向のプルーニングおよびモバイルアクセラレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-13T23:52:03Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。