Identity Preserving Loss for Learned Image Compression
- URL: http://arxiv.org/abs/2204.10869v2
- Date: Tue, 26 Apr 2022 02:49:42 GMT
- Title: Identity Preserving Loss for Learned Image Compression
- Authors: Jiuhong Xiao, Lavisha Aggarwal, Prithviraj Banerjee, Manoj Aggarwal
and Gerard Medioni
- Abstract summary: This work proposes an end-to-end image compression framework that learns domain-specific features to achieve higher compression ratios.
We present a novel Identity Preserving Reconstruction (IPR) loss function which achieves Bits-Per-Pixel (BPP) values that are 38% and 42% of CRF-23 HEVC compression.
We show at-par recognition performance on the LFW dataset with an unseen recognition model while retaining a lower BPP value of 38% of CRF-23 HEVC compression.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning model inference on embedded devices is challenging due to the
limited availability of computation resources. A popular alternative is to
perform model inference on the cloud, which requires transmitting images from
the embedded device to the cloud. Image compression techniques are commonly
employed in such cloud-based architectures to reduce transmission latency over
low bandwidth networks. This work proposes an end-to-end image compression
framework that learns domain-specific features to achieve higher compression
ratios than standard HEVC/JPEG compression techniques while maintaining
accuracy on downstream tasks (e.g., recognition). Our framework does not
require fine-tuning of the downstream task, which allows us to drop-in any
off-the-shelf downstream task model without retraining. We choose faces as an
application domain due to the ready availability of datasets and off-the-shelf
recognition models as representative downstream tasks. We present a novel
Identity Preserving Reconstruction (IPR) loss function which achieves
Bits-Per-Pixel (BPP) values that are ~38% and ~42% of CRF-23 HEVC compression
for LFW (low-resolution) and CelebA-HQ (high-resolution) datasets,
respectively, while maintaining parity in recognition accuracy. The superior
compression ratio is achieved as the model learns to retain the domain-specific
features (e.g., facial features) while sacrificing details in the background.
Furthermore, images reconstructed by our proposed compression model are robust
to changes in downstream model architectures. We show at-par recognition
performance on the LFW dataset with an unseen recognition model while retaining
a lower BPP value of ~38% of CRF-23 HEVC compression.
Related papers
- Map-Assisted Remote-Sensing Image Compression at Extremely Low Bitrates [47.47031054057152]
Generative models have been explored to compress RS images into extremely low-bitrate streams.
These generative models struggle to reconstruct visually plausible images due to the highly ill-posed nature of extremely low-bitrate image compression.
We propose an image compression framework that utilizes a pre-trained diffusion model with powerful natural image priors to achieve high-realism reconstructions.
arXiv Detail & Related papers (2024-09-03T14:29:54Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
Learned image compression (LIC) methods have experienced significant progress during recent years.
LIC methods fail to explicitly explore the image structure and texture components crucial for image compression.
We present DA-Mask that samples visible patches based on the structure and texture of original images.
We propose a simple yet effective masked compression model (MCM), the first framework that unifies LIC and LIC end-to-end for extremely low-bitrate compression.
arXiv Detail & Related papers (2023-06-27T15:36:22Z) - Are Visual Recognition Models Robust to Image Compression? [23.280147529096908]
We analyze the impact of image compression on visual recognition tasks.
We consider a wide range of compression levels, ranging from 0.1 to 2 bits-per-pixel (bpp)
We find that for all three tasks, the recognition ability is significantly impacted when using strong compression.
arXiv Detail & Related papers (2023-04-10T11:30:11Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Lossless Compression with Latent Variable Models [4.289574109162585]
We use latent variable models, which we call 'bits back with asymmetric numeral systems' (BB-ANS)
The method involves interleaving encode and decode steps, and achieves an optimal rate when compressing batches of data.
We describe 'Craystack', a modular software framework which we have developed for rapid prototyping of compression using deep generative models.
arXiv Detail & Related papers (2021-04-21T14:03:05Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
We propose a novel framework for learning $ell_infty$-constrained near-lossless image compression.
We derive the probability model of the quantized residual by quantizing the learned probability model of the original residual.
arXiv Detail & Related papers (2021-03-31T11:53:36Z) - Distributed Learning and Inference with Compressed Images [40.07509530656681]
This paper focuses on vision-based perception for autonomous driving as a paradigmatic scenario.
We propose dataset restoration, based on image restoration with generative adversarial networks (GANs)
Our method is agnostic to both the particular image compression method and the downstream task.
arXiv Detail & Related papers (2020-04-22T11:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.