Quantum Error Detection Without Using Ancilla Qubits
- URL: http://arxiv.org/abs/2204.11114v1
- Date: Sat, 23 Apr 2022 17:51:02 GMT
- Title: Quantum Error Detection Without Using Ancilla Qubits
- Authors: Nicolas J. Guerrero, David E. Weeks
- Abstract summary: We describe and experimentally demonstrate an error detection scheme that does not employ ancilla qubits or mid-circuit measurements.
This is achieved by expanding the Hilbert space where a single logical qubit is encoded using several physical qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we describe and experimentally demonstrate an error detection
scheme that does not employ ancilla qubits or mid-circuit measurements. This is
achieved by expanding the Hilbert space where a single logical qubit is encoded
using several physical qubits. For example, one possible two qubit encoding
identifies $|0\rangle_L=|01\rangle$ and $|1\rangle_L=|10\rangle$. If during the
final measurement a $|11\rangle$ or $|00\rangle$ is observed an error is
declared and the run is not included in subsequent analysis. We provide
codewords for a simple bit-flip encoding, a way to encode the states, a way to
implement logical $U_3$ and logical $C_x$ gates, and a description of which
errors can be detected. We then run Greenberger-Horne-Zeilinger circuits on the
transmon based IBM quantum computers, with an input space of $N\in\{2,3,4,5\}$
logical qubits and $Q\in\{1,2,3,4,5\}$ physical qubits per logical qubit. The
results are compared relative to $Q=1$ with and without error detection and we
find a significant improvement for $Q\in\{2,3,4\}$.
Related papers
- Learning junta distributions and quantum junta states, and QAC$^0$ circuits [0.0]
We consider the problems of learning junta distributions, their quantum counter-part, quantum junta states, and QAC$0$ circuits.
We show that they can be learned with error $varepsilon$ in total variation distance.
We also prove a lower bound of $Omega(4k+log (n)/varepsilon2)$ copies.
arXiv Detail & Related papers (2024-10-21T09:39:20Z) - Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Entangling four logical qubits beyond break-even in a nonlocal code [0.0]
Quantum error correction protects logical quantum information against environmental decoherence.
We encode the GHZ state in four logical qubits with fidelity $ 99.5 pm 0.15 % le F le 99.7 pm 0.1% $ (after postselecting on over 98% of outcomes)
Our results are a first step towards realizing fault-tolerant quantum computation with logical qubits encoded in geometrically nonlocal quantum low-density parity check codes.
arXiv Detail & Related papers (2024-06-04T18:00:00Z) - Creating entangled logical qubits in the heavy-hex lattice with topological codes [0.0]
In this work we show how this bug can be turned into a feature.
We demonstrate entanglement between logical qubits with code distance up to $d = 4$.
We verify the violation of Bell's inequality for both the $d=2$ case with post selection featuring a fidelity of $94%$.
arXiv Detail & Related papers (2024-04-24T17:02:35Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Performance Analysis of Quantum CSS Error-Correcting Codes via
MacWilliams Identities [9.69910104594168]
We analyze the performance of stabilizer codes, one of the most important classes for practical implementations.
We introduce a novel approach that combines the knowledge of WE with a logical operator analysis.
For larger codes our bound provides $rho_mathrmL approx 1215 rho4$ and $rho_mathrmL approx 663 rho5$ for the $[85,1,7]]$ and the $[181,1,10]]$ surface codes.
arXiv Detail & Related papers (2023-05-02T10:19:02Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Compression for Qubit Clocks [55.38708484314286]
We propose a compression protocol for $n$ identically prepared states of qubit clocks.
The protocol faithfully encodes the states into $(1/2)log n$ qubits and $(1/2)log n$ classical bits.
arXiv Detail & Related papers (2022-09-14T09:45:53Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Demonstration of Shor encoding on a trapped-ion quantum computer [0.7036032466145112]
Fault-tolerant quantum error correction (QEC) is crucial for unlocking the true power of quantum computers.
QEC codes use multiple physical qubits to encode a logical qubit, which is protected against errors at the physical qubit level.
arXiv Detail & Related papers (2021-04-02T19:14:30Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.