論文の概要: U-Net with ResNet Backbone for Garment Landmarking Purpose
- arxiv url: http://arxiv.org/abs/2204.12084v1
- Date: Tue, 26 Apr 2022 05:47:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-27 21:29:55.031558
- Title: U-Net with ResNet Backbone for Garment Landmarking Purpose
- Title(参考訳): ガーメントランドマークのためのResNetバックボーン付きU-Net
- Authors: Khay Boon Hong
- Abstract要約: 熱マップに基づくランドマーク検出モデルを構築し、2次元RGBの衣服画像上で重要なランドマークを見つける。
これにより、ランドマーク検出モデルとテクスチャアンラッピングを組み込むことで、現代の3D編集ソフトウェアで3D衣服を再作成することができます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We build a heatmap-based landmark detection model to locate important
landmarks on 2D RGB garment images. The main goal is to detect edges, corners
and suitable interior region of the garments. This let us re-create 3D garments
in modern 3D editing software by incorporate landmark detection model and
texture unwrapping. We use a U-net architecture with ResNet backbone to build
the model. With an appropriate loss function, we are able to train a moderately
robust model.
- Abstract(参考訳): 熱マップに基づくランドマーク検出モデルを構築し、2次元RGBの衣服画像上で重要なランドマークを見つける。
主な目的は、衣服のエッジ、コーナー、適切な内部領域を検出することである。
これにより、ランドマーク検出モデルとテクスチャアンラッピングを組み込むことで、現代の3d編集ソフトウェアで3d衣料品を再現できます。
モデル構築には、ResNetのバックボーンを備えたU-netアーキテクチャを使用します。
適切な損失関数で、適度に堅牢なモデルを訓練することができる。
関連論文リスト
- Garment3DGen: 3D Garment Stylization and Texture Generation [11.836357439129301]
Garment3DGenは、単一の入力イメージをガイダンスとして与えられたベースメッシュから3Dの衣服資産を合成する新しい方法である。
画像から3Dへの拡散手法の最近の進歩を生かして, 3次元の衣服測地を創出する。
我々は、グローバルかつ局所的に一貫した高忠実なテクスチャマップを生成し、入力ガイダンスを忠実にキャプチャする。
論文 参考訳(メタデータ) (2024-03-27T17:59:33Z) - PillarNeSt: Embracing Backbone Scaling and Pretraining for Pillar-based
3D Object Detection [33.00510927880774]
柱型3次元物体検出器における2次元バックボーンスケーリングと事前学習の有効性を示す。
提案する柱型検出器であるPillarNeStは、既存の3Dオブジェクト検出器よりも、nuScenesとArgoversev2データセットのマージンが大きい。
論文 参考訳(メタデータ) (2023-11-29T16:11:33Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能することがわかった。
本研究は,3次元物体検出の高性能化のために,詳細な幾何学的モデリングが不可欠である,という一般的な直観に挑戦する。
論文 参考訳(メタデータ) (2023-05-08T17:59:14Z) - Structure-Preserving 3D Garment Modeling with Neural Sewing Machines [190.70647799442565]
構造保存型3D衣料モデリングのための学習ベースフレームワークであるニューラル縫製機械(NSM)を提案する。
NSMは、多様な衣服形状とトポロジで3D衣服を表現でき、保存された構造で2D画像から3D衣服をリアルに再構成し、3D衣服カテゴリー、形状、トポロジを正確に操作することができる。
論文 参考訳(メタデータ) (2022-11-12T16:43:29Z) - Monocular 3D Object Reconstruction with GAN Inversion [122.96094885939146]
MeshInversionはテクスチャ化された3Dメッシュの再構築を改善するための新しいフレームワークである。
これは、3Dテクスチャメッシュ合成のために事前訓練された3D GANの生成前を利用する。
本フレームワークは,観察部と観察部の両方で一貫した形状とテクスチャを有する忠実な3次元再構成を実現する。
論文 参考訳(メタデータ) (2022-07-20T17:47:22Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
本稿では,点雲からの正確な3次元物体検出のための投票型3次元検出器RBGNetフレームワークを提案する。
決定された光線群を用いて物体表面上の点方向の特徴を集約する。
ScanNet V2 と SUN RGB-D による最先端の3D 検出性能を実現する。
論文 参考訳(メタデータ) (2022-04-05T14:42:57Z) - Robust 3D Garment Digitization from Monocular 2D Images for 3D Virtual
Try-On Systems [1.7394606468019056]
我々は,現実のファッションカタログ画像によく応用できる,堅牢な3次元衣料デジタル化ソリューションを開発した。
教師付き深層ネットワークをトレーニングしてランドマーク予測とテクスチャ塗布作業を行い,大量の合成データを生成した。
オンラインファッションのeコマースプラットフォームから収集した、小さなファッションカタログ画像に手動で注釈を付けました。
論文 参考訳(メタデータ) (2021-11-30T05:49:23Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNetは、3Dポイントクラウドを表現するための新しいエンドツーエンドのディープラーニングフレームワークである。
不規則な3D点雲を通常の2Dカラー画像に変換する。
多視点投影とボキセル化に基づく従来の正規表現法とは異なり、提案した表現は微分可能で可逆である。
論文 参考訳(メタデータ) (2020-12-05T13:19:55Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
ステレオ画像に基づく3D検出のためのZoomNetという新しいフレームワークを提案する。
ZoomNetのパイプラインは、通常の2Dオブジェクト検出モデルから始まり、左右のバウンディングボックスのペアを取得するために使用される。
さらに,RGB画像のテクスチャキューを多用し,より正確な異質度推定を行うため,適応ズームという概念的に真直ぐなモジュールを導入する。
論文 参考訳(メタデータ) (2020-03-01T17:18:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。