論文の概要: On Machine Learning-Driven Surrogates for Sound Transmission Loss
Simulations
- arxiv url: http://arxiv.org/abs/2204.12290v1
- Date: Mon, 25 Apr 2022 08:04:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-27 15:14:04.786644
- Title: On Machine Learning-Driven Surrogates for Sound Transmission Loss
Simulations
- Title(参考訳): 音響損失シミュレーションのための機械学習駆動サロゲートについて
- Authors: Barbara Cunha (LTDS), Abdel-Malek Zine (ICJ), Mohamed Ichchou (ECL),
Christophe Droz (COSYS-SII), St\'ephane Foulard
- Abstract要約: 本稿では,音響伝達損失(STL)のサロゲートのモデル化における4つの機械学習手法について検討する。
特徴の重要性と特徴工学は、解釈可能性と物理的整合性を高めながらモデルの精度を向上させるために使用される。
ビブロア音響領域における他の問題への提案手法の移譲とモデルの限界の可能性について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surrogate models are data-based approximations of computationally expensive
simulations that enable efficient exploration of the model's design space and
informed decision-making in many physical domains. The usage of surrogate
models in the vibroacoustic domain, however, is challenging due to the
non-smooth, complex behavior of wave phenomena. This paper investigates four
Machine Learning (ML) approaches in the modelling of surrogates of Sound
Transmission Loss (STL). Feature importance and feature engineering are used to
improve the models' accuracy while increasing their interpretability and
physical consistency. The transfer of the proposed techniques to other problems
in the vibroacoustic domain and possible limitations of the models are
discussed.
- Abstract(参考訳): サーロゲートモデルは計算コストの高いシミュレーションのデータベース近似であり、モデルの設計空間の効率的な探索と多くの物理領域におけるインフォームド意思決定を可能にする。
しかし、振動音響領域における代理モデルの使用は、波動現象の非滑らかで複雑な振る舞いのために困難である。
本稿では,STLのサロゲートのモデル化における機械学習(ML)の4つのアプローチについて検討する。
特徴の重要性と特徴工学は、解釈可能性と物理的整合性を高めながらモデルの精度を向上させるために使用される。
ビブロア音響領域における他の問題への提案手法の移譲とモデルの限界の可能性について論じる。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Dynamic and Adaptive Feature Generation with LLM [10.142660254703225]
本稿では,特徴生成プロセスの解釈可能性を高める動的かつ適応的な特徴生成手法を提案する。
弊社のアプローチは、さまざまなデータタイプやタスクに適用可能性を広げ、戦略的柔軟性よりも優位性を引き出す。
論文 参考訳(メタデータ) (2024-06-04T20:32:14Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep Image Denoisingモデルは、しばしば高品質なパフォーマンスのために大量のトレーニングデータに依存します。
本稿では,拡散モデル,すなわちRealistic Noise Synthesize Diffusor(RNSD)を用いて現実的な雑音を合成する新しい手法を提案する。
RNSDは、より現実的なノイズや空間的相関を複数の周波数で生成できるような、ガイド付きマルチスケールコンテンツを組み込むことができる。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - A stable deep adversarial learning approach for geological facies
generation [32.97208255533144]
深層生成学習は、従来の地形シミュレーションモデルの限界を克服するための有望なアプローチである。
本研究は, 地下ボリュームにおける条件付き蛇行チャネルに対する, 生成的対向ネットワークと深部変動推論の適用性について検討することを目的とする。
論文 参考訳(メタデータ) (2023-05-12T14:21:14Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
代理モデルを生成するためのモデルベースおよびデータ駆動型戦略を提案する。
後者は、前提となる位相構造に人工的関係を組み込むことで解釈可能な代理モデルを生成する。
我々のフレームワークは、分散パラメータモデルのための様々な空間離散化スキームと互換性がある。
論文 参考訳(メタデータ) (2022-02-02T17:07:02Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
転送学習は,低忠実度シミュレーションデータとシミュレーションデータの両方を利用することができることを示す。
我々は、大きな変形を受ける異種材料のオープンソースベンチマークデータセットであるMechanical MNISTを拡張した。
これらの低忠実度シミュレーション結果に基づいて学習したメタモデルに蓄積された知識の伝達は、高忠実度シミュレーションの結果を予測するのに使用されるメタモデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2020-10-28T12:43:46Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
剛体力学のための微分可能な物理シミュレータを提案する。
軌道最適化の文脈では、閉ループモデル予測制御アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-22T03:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。