Variational Kalman Filtering with Hinf-Based Correction for Robust
Bayesian Learning in High Dimensions
- URL: http://arxiv.org/abs/2204.13089v1
- Date: Wed, 27 Apr 2022 17:38:13 GMT
- Title: Variational Kalman Filtering with Hinf-Based Correction for Robust
Bayesian Learning in High Dimensions
- Authors: Niladri Das, Jed A. Duersch, and Thomas A. Catanach
- Abstract summary: We address the problem of convergence of sequential variational inference filter (VIF) through the application of a robust variational objective and Hinf-norm based correction.
A novel VIF- Hinf recursion that employs consecutive variational inference and Hinf based optimization steps is proposed.
- Score: 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the problem of convergence of sequential
variational inference filter (VIF) through the application of a robust
variational objective and Hinf-norm based correction for a linear Gaussian
system. As the dimension of state or parameter space grows, performing the full
Kalman update with the dense covariance matrix for a large scale system
requires increased storage and computational complexity, making it impractical.
The VIF approach, based on mean-field Gaussian variational inference, reduces
this burden through the variational approximation to the covariance usually in
the form of a diagonal covariance approximation. The challenge is to retain
convergence and correct for biases introduced by the sequential VIF steps. We
desire a framework that improves feasibility while still maintaining reasonable
proximity to the optimal Kalman filter as data is assimilated. To accomplish
this goal, a Hinf-norm based optimization perturbs the VIF covariance matrix to
improve robustness. This yields a novel VIF- Hinf recursion that employs
consecutive variational inference and Hinf based optimization steps. We explore
the development of this method and investigate a numerical example to
illustrate the effectiveness of the proposed filter.
Related papers
- Riemannian Federated Learning via Averaging Gradient Stream [8.75592575216789]
This paper develops and analyzes an efficient Federated Averaging Gradient Stream (RFedAGS) algorithm.
Numerical simulations conducted on synthetic and real-world data demonstrate the performance of the proposed RFedAGS.
arXiv Detail & Related papers (2024-09-11T12:28:42Z) - Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
Random features (RFs) are a popular technique to scale up kernel methods in machine learning.
We find couplings to improve RFs defined on both Euclidean and discrete input spaces.
We reach surprising conclusions about the benefits and limitations of variance reduction as a paradigm.
arXiv Detail & Related papers (2024-05-26T12:25:09Z) - Joint State Estimation and Noise Identification Based on Variational
Optimization [8.536356569523127]
A novel adaptive Kalman filter method based on conjugate-computation variational inference, referred to as CVIAKF, is proposed.
The effectiveness of CVIAKF is validated through synthetic and real-world datasets of maneuvering target tracking.
arXiv Detail & Related papers (2023-12-15T07:47:03Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - An Adaptive Incremental Gradient Method With Support for Non-Euclidean
Norms [19.41328109094503]
We propose and analyze several novel adaptive variants of the popular SAGA algorithm.
We establish its convergence guarantees under general settings.
We improve the analysis of SAGA to support non-Euclidean norms.
arXiv Detail & Related papers (2022-04-28T09:43:07Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.