Stable Derivative Free Gaussian Mixture Variational Inference for Bayesian Inverse Problems
- URL: http://arxiv.org/abs/2501.04259v1
- Date: Wed, 08 Jan 2025 03:50:15 GMT
- Title: Stable Derivative Free Gaussian Mixture Variational Inference for Bayesian Inverse Problems
- Authors: Baojun Che, Yifan Chen, Zhenghao Huan, Daniel Zhengyu Huang, Weijie Wang,
- Abstract summary: Key challenges include costly repeated evaluations of forward models, multimodality, and inaccessible gradients for the forward model.
We develop a variational inference framework that combines Fisher-Rao natural gradient with specialized quadrature rules to enable derivative free updates of Gaussian mixture variational families.
The resulting method, termed Derivative Free Gaussian Mixture Variational Inference (DF-GMVI), guarantees covariance positivity and affine invariance, offering a stable and efficient framework for approximating complex posterior distributions.
- Score: 4.842853252452336
- License:
- Abstract: This paper is concerned with the approximation of probability distributions known up to normalization constants, with a focus on Bayesian inference for large-scale inverse problems in scientific computing. In this context, key challenges include costly repeated evaluations of forward models, multimodality, and inaccessible gradients for the forward model. To address them, we develop a variational inference framework that combines Fisher-Rao natural gradient with specialized quadrature rules to enable derivative free updates of Gaussian mixture variational families. The resulting method, termed Derivative Free Gaussian Mixture Variational Inference (DF-GMVI), guarantees covariance positivity and affine invariance, offering a stable and efficient framework for approximating complex posterior distributions. The effectiveness of DF-GMVI is demonstrated through numerical experiments on challenging scenarios, including distributions with multiple modes, infinitely many modes, and curved modes in spaces with up to hundreds of dimensions. The method's practicality is further demonstrated in a large-scale application, where it successfully recovers the initial conditions of the Navier-Stokes equations from solution data at positive times.
Related papers
- Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations [7.439555720106548]
We propose a fully Bayesian approach that treats the kernel hyper parameters as random variables and constructs coupled differential equations (SDEs) to learn their posterior distribution and that of inducing points.
Our approach provides a time-varying, comprehensive, and realistic posterior approximation through coupling variables using SDE methods.
Our work opens up exciting research avenues for advancing Bayesian inference and offers a powerful modeling tool for continuous-time Gaussian processes.
arXiv Detail & Related papers (2024-08-12T11:41:07Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - Efficient, Multimodal, and Derivative-Free Bayesian Inference With Fisher-Rao Gradient Flows [10.153270126742369]
We study efficient approximate sampling for probability distributions known up to normalization constants.
We specifically focus on a problem class arising in Bayesian inference for large-scale inverse problems in science and engineering applications.
arXiv Detail & Related papers (2024-06-25T04:07:22Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
arXiv Detail & Related papers (2023-07-12T19:30:04Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Variational Kalman Filtering with Hinf-Based Correction for Robust
Bayesian Learning in High Dimensions [2.294014185517203]
We address the problem of convergence of sequential variational inference filter (VIF) through the application of a robust variational objective and Hinf-norm based correction.
A novel VIF- Hinf recursion that employs consecutive variational inference and Hinf based optimization steps is proposed.
arXiv Detail & Related papers (2022-04-27T17:38:13Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.