Dynamical purification and the emergence of quantum state designs from
the projected ensemble
- URL: http://arxiv.org/abs/2204.13657v3
- Date: Tue, 7 Feb 2023 04:53:50 GMT
- Title: Dynamical purification and the emergence of quantum state designs from
the projected ensemble
- Authors: Matteo Ippoliti, Wen Wei Ho
- Abstract summary: Quantum thermalization in a many-body system is defined by the approach of local subsystems towards a universal form.
Projected ensemble can mimic the behavior of a maximally entropic, uniformly random ensemble.
We show that absence of dynamical purification in the space-time dual dynamics yields exact state-designs for all moments $k$ at the same time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum thermalization in a many-body system is defined by the approach of
local subsystems towards a universal form, describable as an ensemble of
quantum states wherein observables acquire thermal expectation values.
Recently, it was demonstrated that the distribution of these quantum states can
also exhibit universal statistics, upon associating each state with the outcome
of a local projective measurement of the complementary subsystem. Specifically,
this collection of pure quantum states -- called the projected ensemble -- can
under certain conditions mimic the behavior of a maximally entropic, uniformly
random ensemble, i.e., form a {\it quantum state-design}, representing a
``deeper'' form of quantum thermalization. In this work, we investigate the
dynamical process underlying this novel emergent universality. Leveraging a
space-time duality mapping for one-dimensional quantum circuits, we argue that
the physics of dynamical purification, which arises in the context of monitored
quantum systems, constrains the the projected ensemble's approach towards the
uniform distribution. We prove that absence of dynamical purification in the
space-time dual dynamics (a condition realized in dual-unitary quantum circuits
with appropriate initial states and final measurement bases) generically yields
exact state-designs for all moments $k$ at the same time, extending previous
rigorous results [Ho and Choi, Phys. Rev. Lett. {\bf 128}, 060601 (2022)].
Conversely, we show that, departing from these conditions, dynamical
purification can lead to a separation of timescales between the formation of a
quantum state-design for moment $k=1$ (regular thermalization) and for high
moments $k\gg 1$ (deep thermalization). Our results suggest that the projected
ensemble can probe nuanced features of quantum dynamics inaccessible to regular
thermalization, such as quantum information scrambling.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Deep thermalization in continuous-variable quantum systems [2.979579757819132]
We study the ensemble of pure states supported on a small subsystem of a few modes.
We find that the induced ensemble attains a universal form, independent of the choice of measurement basis.
arXiv Detail & Related papers (2024-05-09T00:01:23Z) - A Maximum Entropy Principle in Deep Thermalization and in Hilbert-Space Ergodicity [3.404409295403274]
We report universal statistical properties displayed by ensembles of pure states that naturally emerge in quantum many-body systems.
Our results generalize the notions of Hilbert-space ergodicity to time-independent Hamiltonian dynamics and deep thermalization.
arXiv Detail & Related papers (2024-03-18T17:09:04Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Solvable model of deep thermalization with distinct design times [0.0]
We study the emergence over time of a universal, uniform distribution of quantum states supported on a finite subsystem.
This phenomenon represents a form of equilibration in quantum many-body systems stronger than regular thermalization.
We present an exactly-solvable model of chaotic dynamics where the two processes can be shown to occur over different time scales.
arXiv Detail & Related papers (2022-08-22T18:43:45Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Exact emergent quantum state designs from quantum chaotic dynamics [0.0]
We consider an ensemble of pure states supported on a small subsystem, generated from projective measurements of the remainder of the system in a local basis.
We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details.
Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics.
arXiv Detail & Related papers (2021-09-15T18:00:10Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Emergent quantum state designs from individual many-body wavefunctions [3.9606043744835375]
We show that a single non-random quantum state is shown to encode universal and highly random quantum state ensembles.
Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states.
arXiv Detail & Related papers (2021-03-05T08:32:47Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.