論文の概要: Probabilistic Models for Manufacturing Lead Times
- arxiv url: http://arxiv.org/abs/2204.13792v1
- Date: Thu, 28 Apr 2022 21:51:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 06:45:35.302930
- Title: Probabilistic Models for Manufacturing Lead Times
- Title(参考訳): 鉛製造における確率モデル
- Authors: Recep Yusuf Bekci, Yacine Mahdid, Jinling Xing, Nikita Letov, Ying
Zhang, Zahid Pasha
- Abstract要約: ドメインに確率的モデリングを導入し、異なる能力の観点からモデルを比較する。
以上の結果から,すべてのモデルが,ドメインエクスペリエンスを使用し,経験周波数と良好な校正を行う企業評価ベンチマークに勝っていることが示唆された。
- 参考スコア(独自算出の注目度): 2.990160370038151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we utilize Gaussian processes, probabilistic neural network,
natural gradient boosting, and quantile regression augmented gradient boosting
to model lead times of laser manufacturing processes. We introduce
probabilistic modelling in the domain and compare the models in terms of
different abilities. While providing a comparison between the models in
real-life data, our work has many use cases and substantial business value. Our
results indicate that all of the models beat the company estimation benchmark
that uses domain experience and have good calibration with the empirical
frequencies.
- Abstract(参考訳): 本研究では, ガウス過程, 確率的ニューラルネットワーク, 自然勾配ブースティング, 量子性回帰拡張勾配ブースティングを用いて, レーザ製造プロセスのリードタイムをモデル化する。
確率的モデリングをドメインに導入し、異なる能力の観点でモデルを比較する。
実生活データにおけるモデルの比較を提供する一方で、我々の作業には多くのユースケースと実質的なビジネス価値があります。
その結果,全てのモデルが,ドメインエクスペリエンスを使用し,経験周波数と良好な校正を行う企業評価ベンチマークに勝っていることがわかった。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities [0.0]
ニューラルネットワークが因子の露出を出力し、因子が返ってくる因子分析のための、新しい機械学習ベースのアプローチであるNeuralFactorsを紹介する。
このモデルは,ログライクな性能と計算効率の観点から,従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-08-02T18:01:09Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
量子化法における実データを用いたキャリブレーションの代用として合成データを用いた場合について検討する。
本稿では,StyleGAN2-ADAが生成したデータと事前学習したDiStyleGANを用いて定量化したモデルの性能と,実データを用いた量子化とフラクタル画像に基づく代替データ生成手法との比較を行った。
論文 参考訳(メタデータ) (2023-05-10T11:10:09Z) - Stochastic Parameterizations: Better Modelling of Temporal Correlations
using Probabilistic Machine Learning [1.5293427903448025]
確率的フレームワーク内で物理インフォームされたリカレントニューラルネットワークを用いることで,96大気シミュレーションのモデルが競合することを示す。
これは、標準の1次自己回帰スキームと比較して時間的相関をモデル化する能力が優れているためである。
文献から多くの指標を評価するとともに、将来的な気候モデルにおいて、確率論的尺度が統一的な選択である可能性についても論じる。
論文 参考訳(メタデータ) (2022-03-28T14:51:42Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
我々は,マイクロデータモデルに基づく強化学習(MBRL)に寄与する。
マルチモーダルな後続予測を必要とする環境では、混合密度ネットは他のモデルよりも大きなマージンで優れていることがわかった。
また、決定論的モデルは同等であり、実際、確率論的モデルよりも一貫して(非目立ったことではないが)優れていることも見出した。
論文 参考訳(メタデータ) (2021-07-24T11:38:25Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z) - Forecasting Industrial Aging Processes with Machine Learning Methods [0.0]
我々は、従来のステートレスモデルとより複雑なリカレントニューラルネットワークを比較して、幅広いデータ駆動モデルを評価する。
以上の結果から,リカレントモデルでは,より大きなデータセットでトレーニングした場合,ほぼ完璧な予測が得られた。
論文 参考訳(メタデータ) (2020-02-05T13:06:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。