Explainable AI via Learning to Optimize
- URL: http://arxiv.org/abs/2204.14174v2
- Date: Sun, 11 Jun 2023 13:11:01 GMT
- Title: Explainable AI via Learning to Optimize
- Authors: Howard Heaton and Samy Wu Fung
- Abstract summary: Indecipherable black boxes are common in machine learning (ML), but applications increasingly require explainable artificial intelligence (XAI)
This work provides concrete tools for XAI in situations where prior knowledge must be encoded and untrustworthy inferences flagged.
- Score: 2.8010955192967852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Indecipherable black boxes are common in machine learning (ML), but
applications increasingly require explainable artificial intelligence (XAI).
The core of XAI is to establish transparent and interpretable data-driven
algorithms. This work provides concrete tools for XAI in situations where prior
knowledge must be encoded and untrustworthy inferences flagged. We use the
"learn to optimize" (L2O) methodology wherein each inference solves a
data-driven optimization problem. Our L2O models are straightforward to
implement, directly encode prior knowledge, and yield theoretical guarantees
(e.g. satisfaction of constraints). We also propose use of interpretable
certificates to verify whether model inferences are trustworthy. Numerical
examples are provided in the applications of dictionary-based signal recovery,
CT imaging, and arbitrage trading of cryptoassets. Code and additional
documentation can be found at https://xai-l2o.research.typal.academy.
Related papers
- Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Explainable AI needs formal notions of explanation correctness [2.1309989863595677]
Machine learning in critical domains such as medicine poses risks and requires regulation.
One requirement is that decisions of ML systems in high-risk applications should be human-understandable.
In its current form, XAI is unfit to provide quality control for ML; it itself needs scrutiny.
arXiv Detail & Related papers (2024-09-22T20:47:04Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content.
We propose MUSE, a comprehensive machine unlearning evaluation benchmark.
We benchmark how effectively eight popular unlearning algorithms can unlearn Harry Potter books and news articles.
arXiv Detail & Related papers (2024-07-08T23:47:29Z) - Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them) [14.396431159723297]
We show that conformal prediction can theoretically be extended to textitany joint data distribution.
Although the most general case is exceedingly impractical to compute, for concrete practical applications we outline a procedure for deriving specific conformal algorithms.
arXiv Detail & Related papers (2024-05-10T17:40:24Z) - Towards Constituting Mathematical Structures for Learning to Optimize [101.80359461134087]
A technique that utilizes machine learning to learn an optimization algorithm automatically from data has gained arising attention in recent years.
A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network.
While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets.
We propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems.
arXiv Detail & Related papers (2023-05-29T19:37:28Z) - Interpretability at Scale: Identifying Causal Mechanisms in Alpaca [62.65877150123775]
We use Boundless DAS to efficiently search for interpretable causal structure in large language models while they follow instructions.
Our findings mark a first step toward faithfully understanding the inner-workings of our ever-growing and most widely deployed language models.
arXiv Detail & Related papers (2023-05-15T17:15:40Z) - Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life [0.5115559623386964]
It is critical to have confidence in AI's trustworthiness in energy and engineering systems.
The use of explainable AI (XAI) and interpretable machine learning (IML) is crucial for the accurate prediction of prognostics.
arXiv Detail & Related papers (2023-01-17T03:17:07Z) - Greybox XAI: a Neural-Symbolic learning framework to produce
interpretable predictions for image classification [6.940242990198]
Greybox XAI is a framework that composes a DNN and a transparent model thanks to the use of a symbolic Knowledge Base (KB)
We address the problem of the lack of universal criteria for XAI by formalizing what an explanation is.
We show how this new architecture is accurate and explainable in several datasets.
arXiv Detail & Related papers (2022-09-26T08:55:31Z) - Symbolic Learning to Optimize: Towards Interpretability and Scalability [113.23813868412954]
Recent studies on Learning to Optimize (L2O) suggest a promising path to automating and accelerating the optimization procedure for complicated tasks.
Existing L2O models parameterize optimization rules by neural networks, and learn those numerical rules via meta-training.
In this paper, we establish a holistic symbolic representation and analysis framework for L2O.
We propose a lightweight L2O model that can be meta-trained on large-scale problems and outperformed human-designed and tuneds.
arXiv Detail & Related papers (2022-03-13T06:04:25Z) - Interpretable pipelines with evolutionarily optimized modules for RL
tasks with visual inputs [5.254093731341154]
We propose end-to-end pipelines composed of multiple interpretable models co-optimized by means of evolutionary algorithms.
We test our approach in reinforcement learning environments from the Atari benchmark.
arXiv Detail & Related papers (2022-02-10T10:33:44Z) - A Practical Tutorial on Explainable AI Techniques [5.671062637797752]
This tutorial is meant to be the go-to handbook for any audience with a computer science background.
It aims at getting intuitive insights of machine learning models, accompanied with straight, fast, and intuitive explanations out of the box.
arXiv Detail & Related papers (2021-11-13T17:47:31Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.