Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life
- URL: http://arxiv.org/abs/2301.06676v2
- Date: Sun, 28 Apr 2024 05:53:46 GMT
- Title: Explainable, Interpretable & Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life
- Authors: Kazuma Kobayashi, Syed Bahauddin Alam,
- Abstract summary: It is critical to have confidence in AI's trustworthiness in energy and engineering systems.
The use of explainable AI (XAI) and interpretable machine learning (IML) is crucial for the accurate prediction of prognostics.
- Score: 0.5115559623386964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) and Machine learning (ML) are increasingly used in energy and engineering systems, but these models must be fair, unbiased, and explainable. It is critical to have confidence in AI's trustworthiness. ML techniques have been useful in predicting important parameters and in improving model performance. However, for these AI techniques to be useful for making decisions, they need to be audited, accounted for, and easy to understand. Therefore, the use of explainable AI (XAI) and interpretable machine learning (IML) is crucial for the accurate prediction of prognostics, such as remaining useful life (RUL), in a digital twin system, to make it intelligent while ensuring that the AI model is transparent in its decision-making processes and that the predictions it generates can be understood and trusted by users. By using AI that is explainable, interpretable, and trustworthy, intelligent digital twin systems can make more accurate predictions of RUL, leading to better maintenance and repair planning, and ultimately, improved system performance. The objective of this paper is to explain the ideas of XAI and IML and to justify the important role of AI/ML in the digital twin framework and components, which requires XAI to understand the prediction better. This paper explains the importance of XAI and IML in both local and global aspects to ensure the use of trustworthy AI/ML applications for RUL prediction. We used the RUL prediction for the XAI and IML studies and leveraged the integrated Python toolbox for interpretable machine learning~(PiML).
Related papers
- Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence [59.07578850674114]
Sound deductive reasoning is an indisputably desirable aspect of general intelligence.<n>It is well-documented that even the most advanced frontier systems regularly and consistently falter on easily-solvable reasoning tasks.<n>We argue that their unsound behavior is a consequence of the statistical learning approach powering their development.
arXiv Detail & Related papers (2025-06-30T14:37:50Z) - General Scales Unlock AI Evaluation with Explanatory and Predictive Power [57.7995945974989]
benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems.
We introduce general scales for AI evaluation that can explain what common AI benchmarks really measure.
Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate.
arXiv Detail & Related papers (2025-03-09T01:13:56Z) - Explainable artificial intelligence (XAI): from inherent explainability to large language models [0.0]
Explainable AI (XAI) techniques facilitate the explainability or interpretability of machine learning models.
This paper details the advancements of explainable AI methods, from inherently interpretable models to modern approaches.
We review explainable AI techniques that leverage vision-language model (VLM) frameworks to automate or improve the explainability of other machine learning models.
arXiv Detail & Related papers (2025-01-17T06:16:57Z) - A Comprehensive Guide to Explainable AI: From Classical Models to LLMs [25.07463077055411]
Explainable Artificial Intelligence (XAI) addresses the growing need for transparency and interpretability in AI systems.
It explores interpretability in traditional models like Decision Trees, Linear Regression, and Support Vector Machines.
The book presents practical techniques such as SHAP, LIME, Grad-CAM, counterfactual explanations, and causal inference.
arXiv Detail & Related papers (2024-12-01T13:01:01Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications [17.624263707781655]
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management.
This article delves into the foundational concepts and cutting-edge developments in these fields.
By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management.
arXiv Detail & Related papers (2024-10-02T06:24:51Z) - Explainable AI needs formal notions of explanation correctness [2.1309989863595677]
Machine learning in critical domains such as medicine poses risks and requires regulation.
One requirement is that decisions of ML systems in high-risk applications should be human-understandable.
In its current form, XAI is unfit to provide quality control for ML; it itself needs scrutiny.
arXiv Detail & Related papers (2024-09-22T20:47:04Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAI is being extended towards Large Language Models (LLMs)
This paper analyzes how XAI can benefit LLMs and AI systems.
We introduce 10 strategies, introducing the key techniques for each and discussing their associated challenges.
arXiv Detail & Related papers (2024-03-13T20:25:27Z) - Robots That Ask For Help: Uncertainty Alignment for Large Language Model
Planners [85.03486419424647]
KnowNo is a framework for measuring and aligning the uncertainty of large language models.
KnowNo builds on the theory of conformal prediction to provide statistical guarantees on task completion.
arXiv Detail & Related papers (2023-07-04T21:25:12Z) - Explainable AI via Learning to Optimize [2.8010955192967852]
Indecipherable black boxes are common in machine learning (ML), but applications increasingly require explainable artificial intelligence (XAI)
This work provides concrete tools for XAI in situations where prior knowledge must be encoded and untrustworthy inferences flagged.
arXiv Detail & Related papers (2022-04-29T15:57:03Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Confident AI [0.0]
We propose "Confident AI" as a means to designing Artificial Intelligence (AI) and Machine Learning (ML) systems with both algorithm and user confidence in model predictions and reported results.
The 4 basic tenets of Confident AI are Repeatability, Believability, Sufficiency, and Adaptability.
arXiv Detail & Related papers (2022-02-12T02:26:46Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A Practical Tutorial on Explainable AI Techniques [5.671062637797752]
This tutorial is meant to be the go-to handbook for any audience with a computer science background.
It aims at getting intuitive insights of machine learning models, accompanied with straight, fast, and intuitive explanations out of the box.
arXiv Detail & Related papers (2021-11-13T17:47:31Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z) - Do ML Experts Discuss Explainability for AI Systems? A discussion case
in the industry for a domain-specific solution [3.190891983147147]
Domain specialists have an understanding of the data and how it can impact their decisions.
Without a deep understanding of the data, ML experts are not able to tune their models to get optimal results for a specific domain.
There are a lot of efforts to research AI explainability for different contexts, users and goals.
arXiv Detail & Related papers (2020-02-27T21:23:27Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.