論文の概要: A Human-Centric Perspective on Fairness and Transparency in Algorithmic
Decision-Making
- arxiv url: http://arxiv.org/abs/2205.00033v1
- Date: Fri, 29 Apr 2022 18:31:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 13:56:01.898569
- Title: A Human-Centric Perspective on Fairness and Transparency in Algorithmic
Decision-Making
- Title(参考訳): アルゴリズム意思決定における公平性と透明性に関する人間中心の視点
- Authors: Jakob Schoeffer
- Abstract要約: 自動意思決定システム(ADS)は、連続的な意思決定にますます利用されている。
非透明なシステムは、健全性の評価と校正が難しいため、不公平な結果をもたらす傾向にある。
私は博士論文を通じて以下の3つの主要な貢献をしたいと考えています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automated decision systems (ADS) are increasingly used for consequential
decision-making. These systems often rely on sophisticated yet opaque machine
learning models, which do not allow for understanding how a given decision was
arrived at. This is not only problematic from a legal perspective, but
non-transparent systems are also prone to yield unfair outcomes because their
sanity is challenging to assess and calibrate in the first place -- which is
particularly worrisome for human decision-subjects. Based on this observation
and building upon existing work, I aim to make the following three main
contributions through my doctoral thesis: (a) understand how (potential)
decision-subjects perceive algorithmic decisions (with varying degrees of
transparency of the underlying ADS), as compared to similar decisions made by
humans; (b) evaluate different tools for transparent decision-making with
respect to their effectiveness in enabling people to appropriately assess the
quality and fairness of ADS; and (c) develop human-understandable technical
artifacts for fair automated decision-making. Over the course of the first half
of my PhD program, I have already addressed substantial pieces of (a) and (c),
whereas (b) will be the major focus of the second half.
- Abstract(参考訳): 自動意思決定システム(ADS)は、連続的な意思決定にますます利用されている。
これらのシステムは、しばしば洗練されたが不透明な機械学習モデルに依存しており、与えられた決定がどのように到達したかを理解することができない。
これは法的な観点から問題となるだけでなく、不透明なシステムでも不公平な結果をもたらす傾向にある。
この観察と既存の成果に基づいて、博士論文を通じて以下の3つの主な貢献をすることを目指しています。
(a)人間による同様の決定と比較して、(潜在的)意思決定がアルゴリズム的決定(基礎となるADSの透明性の程度が異なる)をどう知覚するかを理解すること。
(b)ADSの品質と公平性を適切に評価する上での有効性について、透明性のある意思決定のためのさまざまなツールを評価すること。
(c)公正な自動意思決定のための人間の理解可能な技術工芸品を開発する。
私のPh.D.プログラムの前半で、私はすでにかなりの部分を処理しています。
(a)及び
(c)
(b)が後半の主な焦点となる。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
観察されたデータから人間の行動を理解することは、意思決定における透明性と説明責任にとって重要である。
意思決定者の方針をモデル化することが困難である医療などの現実的な設定を考えてみましょう。
本稿では, 設計による透明性の向上, 部分観測可能性の確保, 完全にオフラインで動作可能なデータ駆動型意思決定行動の表現を提案する。
論文 参考訳(メタデータ) (2023-10-28T13:06:14Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - Influence of the algorithm's reliability and transparency in the user's
decision-making process [0.0]
我々は61人の参加者とともにオンライン実験を行い、アルゴリズムの透明性と信頼性の変化がユーザーの意思決定プロセスにどのように影響するかを調べる。
その結果,信頼性が悪くても,アルゴリズムの判断にある程度の信頼感が示されることがわかった。
論文 参考訳(メタデータ) (2023-07-13T03:13:49Z) - Algorithmic Decision-Making Safeguarded by Human Knowledge [8.482569811904028]
我々は人的知識によるアルゴリズム決定の強化について研究する。
アルゴリズム決定が大規模データに対して最適である場合、非データ駆動のヒューマンガードレールは、通常、何の利益も与えないことを示す。
これらのケースでは、十分なデータであっても、人間の知識による増強は、アルゴリズムによる決定の性能を向上させることができる。
論文 参考訳(メタデータ) (2022-11-20T17:13:32Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - A Justice-Based Framework for the Analysis of Algorithmic
Fairness-Utility Trade-Offs [0.0]
予測に基づく意思決定システムでは、異なる視点が異なってくる可能性がある。
意思決定者の短期的なビジネス目標はしばしば、意思決定対象が公平に扱われたいという願望と矛盾している。
本稿では,これらの価値を優先した選択を明確化するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-06T20:31:55Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - A Study on Fairness and Trust Perceptions in Automated Decision Making [0.0]
我々は, 公平性と信頼性に対する人々の認識に対する影響について, 自動意思決定システムを説明する様々な試みを評価した。
パイロット研究では、驚くべき定性的な洞察だけでなく、大きな主な研究で検証、拡張、そして徹底的に議論されなければならない予備的な重要な効果も明らかにしました。
論文 参考訳(メタデータ) (2021-03-08T13:57:31Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Automatic Discovery of Interpretable Planning Strategies [9.410583483182657]
我々は、慣用的ポリシーを単純かつ解釈可能な記述に変換する方法であるAI-Interpretを紹介する。
フローチャートとしてAI-Interpretが生み出す決定ルールを守れば、人々の計画戦略や意思決定は大幅に改善される。
論文 参考訳(メタデータ) (2020-05-24T12:24:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。