論文の概要: Algorithmic Decision-Making Safeguarded by Human Knowledge
- arxiv url: http://arxiv.org/abs/2211.11028v1
- Date: Sun, 20 Nov 2022 17:13:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 19:12:06.814018
- Title: Algorithmic Decision-Making Safeguarded by Human Knowledge
- Title(参考訳): 人間の知識に保護されたアルゴリズムによる意思決定
- Authors: Ningyuan Chen, Ming Hu, Wenhao Li
- Abstract要約: 我々は人的知識によるアルゴリズム決定の強化について研究する。
アルゴリズム決定が大規模データに対して最適である場合、非データ駆動のヒューマンガードレールは、通常、何の利益も与えないことを示す。
これらのケースでは、十分なデータであっても、人間の知識による増強は、アルゴリズムによる決定の性能を向上させることができる。
- 参考スコア(独自算出の注目度): 8.482569811904028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Commercial AI solutions provide analysts and managers with data-driven
business intelligence for a wide range of decisions, such as demand forecasting
and pricing. However, human analysts may have their own insights and
experiences about the decision-making that is at odds with the algorithmic
recommendation. In view of such a conflict, we provide a general analytical
framework to study the augmentation of algorithmic decisions with human
knowledge: the analyst uses the knowledge to set a guardrail by which the
algorithmic decision is clipped if the algorithmic output is out of bound, and
seems unreasonable. We study the conditions under which the augmentation is
beneficial relative to the raw algorithmic decision. We show that when the
algorithmic decision is asymptotically optimal with large data, the
non-data-driven human guardrail usually provides no benefit. However, we point
out three common pitfalls of the algorithmic decision: (1) lack of domain
knowledge, such as the market competition, (2) model misspecification, and (3)
data contamination. In these cases, even with sufficient data, the augmentation
from human knowledge can still improve the performance of the algorithmic
decision.
- Abstract(参考訳): 商用aiソリューションは、需要予測や価格など、幅広い意思決定のためにアナリストやマネージャにデータ駆動のビジネスインテリジェンスを提供する。
しかし、人間アナリストはアルゴリズムの推奨に反する意思決定について独自の洞察と経験を持っているかもしれない。
アナリストは、アルゴリズムの出力が境界外である場合、アルゴリズムの判断が切断されるガードレールを設定するために、知識を用いて、人的知識によるアルゴリズム決定の増大を研究するための一般的な分析フレームワークを提供する。
本研究では,生のアルゴリズム決定に対して拡張が有益である条件について検討する。
アルゴリズム決定が大規模データに対して漸近的に最適である場合、非データ駆動のヒューマンガードレールは、通常、利益を提供しない。
しかし,アルゴリズム決定に共通する落とし穴は,(1)市場競争のようなドメイン知識の欠如,(2)モデルミス種別,(3)データ汚染の3つである。
これらのケースでは、十分なデータであっても、人間の知識の増大はアルゴリズムによる決定の性能を向上させることができる。
関連論文リスト
- Integrating Expert Judgment and Algorithmic Decision Making: An Indistinguishability Framework [12.967730957018688]
予測と意思決定タスクにおける人間とAIの協調のための新しい枠組みを導入する。
我々の手法は人間の判断を利用して、アルゴリズム的に区別できない入力を区別する。
論文 参考訳(メタデータ) (2024-10-11T13:03:53Z) - Designing Algorithmic Recommendations to Achieve Human-AI Complementarity [2.4247752614854203]
人間の意思決定を支援するレコメンデーションアルゴリズムの設計を形式化する。
我々は、潜在的なアウトカムフレームワークを使用して、ヒトの意思決定者による二元的治療選択に対するレコメンデーションの効果をモデル化する。
機械学習で実装可能な最小限の推奨アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-05-02T17:15:30Z) - Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies [0.43981305860983716]
我々は、人間とAI、AIの3つの代替意思決定システムのパフォーマンスを比較する方法を示す。
リスクアセスメントの勧告は、現金保釈を課す裁判官の決定の分類精度を向上しないことがわかった。
論文 参考訳(メタデータ) (2024-03-18T01:04:52Z) - Persuasion, Delegation, and Private Information in Algorithm-Assisted
Decisions [0.0]
プリンシパルは、バイナリ状態の公開観測可能な予測を生成するアルゴリズムを設計する。
彼女は、予測に基づいて直接行動するか、または、私的な情報を持つエージェントに決定を委譲するかを判断しなければならない。
このような環境における予測アルゴリズムとデリゲートルールの最適設計について検討する。
論文 参考訳(メタデータ) (2024-02-14T18:32:30Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - Decision-aid or Controller? Steering Human Decision Makers with
Algorithms [5.449173263947196]
人間の意思決定者について学習し、最終決定に影響を与えるために「個人化された推薦」を提供する意思決定支援アルゴリズムについて検討する。
このようなアルゴリズムの潜在的な応用とその社会的意味について論じる。
論文 参考訳(メタデータ) (2023-03-23T23:24:26Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
不確実性は意思決定とリスク管理において広範囲にわたる課題である。
本稿では,このような戦略を体系的に理解し,その適用範囲を判断し,それらをうまく活用するための枠組みを開発する。
論文 参考訳(メタデータ) (2023-01-18T19:16:23Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
異常検出は、ITサービスの信頼性とサービス性にとってますます重要になる。
既存の教師なし手法は、適切な決定境界を得るために異常な例を必要とする。
我々は,異常判定と異常判定の2段階からなる教師なし異常検出手法であるA2Logを開発した。
論文 参考訳(メタデータ) (2021-09-20T13:40:21Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores [85.12096045419686]
本研究では,児童虐待のホットラインスクリーニング決定を支援するアルゴリズムツールの採用について検討した。
まず、ツールがデプロイされたときに人間が行動を変えることを示します。
表示されたスコアが誤ったリスク推定である場合、人間はマシンの推奨に従わない可能性が低いことを示す。
論文 参考訳(メタデータ) (2020-02-19T07:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。