論文の概要: Adaptive Online Optimization with Predictions: Static and Dynamic
Environments
- arxiv url: http://arxiv.org/abs/2205.00446v1
- Date: Sun, 1 May 2022 11:03:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 16:00:42.986840
- Title: Adaptive Online Optimization with Predictions: Static and Dynamic
Environments
- Title(参考訳): 予測による適応型オンライン最適化:静的および動的環境
- Authors: Pedro Zattoni Scroccaro, Arman Sharifi Kolarijani and Peyman Mohajerin
Esfahani
- Abstract要約: 我々は,勾配予測,関数予測,ダイナミックスを利用する新しいステップサイズルールとOCOアルゴリズムを提案する。
提案アルゴリズムは、参照アクションシーケンスのダイナミックスの観点から、静的および動的後悔境界を楽しむ。
コンベックスと強いコンベックスの両コストについて検討した。
- 参考スコア(独自算出の注目度): 5.553963083111226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past few years, Online Convex Optimization (OCO) has received notable
attention in the control literature thanks to its flexible real-time nature and
powerful performance guarantees. In this paper, we propose new step-size rules
and OCO algorithms that simultaneously exploit gradient predictions, function
predictions and dynamics, features particularly pertinent to control
applications. The proposed algorithms enjoy static and dynamic regret bounds in
terms of the dynamics of the reference action sequence, gradient prediction
error and function prediction error, which are generalizations of known
regularity measures from the literature. We present results for both convex and
strongly convex costs. We validate the performance of the proposed algorithms
in a trajectory tracking case study, as well as portfolio optimization using
real-world datasets.
- Abstract(参考訳): 過去数年間、オンライン凸最適化(oco)は柔軟なリアルタイム性と強力なパフォーマンス保証によって、制御文学で注目されてきた。
本稿では,勾配予測,関数予測,ダイナミクスを同時に活用する新しいステップサイズルールとOCOアルゴリズムを提案する。
提案アルゴリズムは,文献からの既知の正則性尺度の一般化である参照動作シーケンス,勾配予測誤差,関数予測誤差のダイナミックスの観点から,静的かつ動的後悔境界を享受する。
コンベックスコストと強いコンベックスコストの両方について結果を示す。
提案アルゴリズムの性能を軌道追跡ケーススタディで検証し,実世界のデータセットを用いたポートフォリオ最適化を行った。
関連論文リスト
- A novel algorithm for optimizing bundle adjustment in image sequence alignment [6.322876598831792]
本稿では,低温電子トモグラフィーにおける画像シーケンスアライメントの文脈におけるバンドル調整(BA)モデルを最適化するための新しいアルゴリズムを提案する。
アルゴリズムの性能を評価するために、合成データセットと実世界のデータセットの両方に関する大規模な実験を行った。
論文 参考訳(メタデータ) (2024-11-10T03:19:33Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
本稿では、勾配降下(SGD)とその変種に着目し、ディープラーニングの最適化に新しいアプローチを採用する。
我々はSGDとその変種がSAMのような平らなミニマと同等の性能を示すことを示した。
本研究は、トレーニング損失とホールドアウト精度の関係、およびSGDとノイズ対応変種の性能について、いくつかの重要な知見を明らかにした。
論文 参考訳(メタデータ) (2024-03-01T14:55:22Z) - Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections [0.7614628596146602]
雑音データから低次元ダイナミクスを抽出する低次元ベクトル自己回帰モデルを提案する。
最適斜め分解は、予測誤差の共分散に関する最良の予測可能性のために導出される。
合成ロレンツシステムとイーストマンケミカルの工業プロセスのデータセットを用いて,提案手法の優れた性能と効率を実証した。
論文 参考訳(メタデータ) (2024-01-14T05:38:10Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
本稿では,遺伝的アルゴリズム (GA), 微分進化 (DE), 粒子群最適化 (PSO) のメタヒューリスティックアルゴリズムの適用について検討する。
平均二乗誤差(MSE)や平均絶対パーセンテージ誤差(MAPE)といった指標に基づいて天気予報の性能を評価する。
論文 参考訳(メタデータ) (2023-09-05T22:13:35Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control [0.0]
値空間とロールアウトの近似に関するAlphaZero/TDGammonの原理が決定論的かつ最適制御問題に広く適用されていることを示す。
これらの考え方は、モデル制御、適応制御、分散制御、ニューラルネットワークに基づく値とポリシー近似など、他の重要な方法論と効果的に統合することができる。
論文 参考訳(メタデータ) (2021-08-20T19:17:35Z) - Deformable Linear Object Prediction Using Locally Linear Latent Dynamics [51.740998379872195]
変形可能な物体(例えばロープ)の予測は、その非線形ダイナミクスと無限次元の構成空間のために困難である。
我々は、将来の潜在状態を予測するのに使用できる局所線形なアクション条件付きダイナミクスモデルを学ぶ。
我々は,本手法が将来10段階まで正確にロープ状態を予測できることを実証的に実証した。
論文 参考訳(メタデータ) (2021-03-26T00:29:31Z) - Iterative Amortized Policy Optimization [147.63129234446197]
政策ネットワークは、継続的制御のための深層強化学習(RL)アルゴリズムの中心的な特徴である。
変分推論の観点からは、ポリシーネットワークは、ポリシー分布を直接ではなく、ネットワークパラメータを最適化する、テキスト化最適化の一形態である。
我々は,反復的アモート化ポリシ最適化により,ベンチマーク連続制御タスクの直接アモート化よりも性能が向上することが実証された。
論文 参考訳(メタデータ) (2020-10-20T23:25:42Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
ディープラーニングフレームワークにおける機械学習問題に適用可能な適応正規化を取り入れた一階最適化アルゴリズムを提案する。
一般的なベンチマークデータセットに適用した従来のネットワークモデルに基づく画像分類タスクを用いて,提案アルゴリズムの有効性を実証的に実証した。
論文 参考訳(メタデータ) (2020-04-14T07:54:53Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。