論文の概要: The use of Data Augmentation as a technique for improving neural network
accuracy in detecting fake news about COVID-19
- arxiv url: http://arxiv.org/abs/2205.00452v1
- Date: Sun, 1 May 2022 11:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 14:28:26.554704
- Title: The use of Data Augmentation as a technique for improving neural network
accuracy in detecting fake news about COVID-19
- Title(参考訳): 新型コロナウイルスの偽ニュースを検出するためのニューラルネットワーク精度向上手法としてのData Augmentationの利用
- Authors: Wilton O. J\'unior, Mauricio S. da Cruz, Andre Brasil Vieira
Wyzykowski, Arnaldo Bispo de Jesus
- Abstract要約: 本稿では,自然言語処理(NLP)とデータ拡張技術の適用により,ニューラルネットワークの性能が向上し,ポルトガル語における偽ニュースの検出が向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to present how the application of Natural Language Processing
(NLP) and data augmentation techniques can improve the performance of a neural
network for better detection of fake news in the Portuguese language. Fake news
is one of the main controversies during the growth of the internet in the last
decade. Verifying what is fact and what is false has proven to be a difficult
task, while the dissemination of false news is much faster, which leads to the
need for the creation of tools that, automated, assist in the process of
verification of what is fact and what is false. In order to bring a solution,
an experiment was developed with neural network using news, real and fake,
which were never seen by artificial intelligence (AI). There was a significant
performance in the news classification after the application of the mentioned
techniques.
- Abstract(参考訳): 本稿では,自然言語処理(NLP)とデータ拡張技術の適用により,ニューラルネットワークの性能が向上し,ポルトガル語における偽ニュースの検出が向上することを示す。
フェイクニュースは、過去10年間のインターネットの成長における主要な論争の1つだ。
事実と虚偽の検証は難しい作業であることが証明されているが、偽ニュースの拡散はずっと速く、その結果、事実と虚偽の検証プロセスを自動化して支援するツールの開発が必要になる。
解決策をもたらすために、ニューズ、リアル、フェイクを使ったニューラルネットワークによる実験が開発されたが、人工知能(AI)では見られなかった。
上記の手法を適用した後,ニュース分類において顕著な性能を示した。
関連論文リスト
- Detection of Human and Machine-Authored Fake News in Urdu [2.013675429941823]
ソーシャルメディアは偽ニュースの拡散を増幅した。
従来の偽ニュース検出手法は、言語的手がかりに依存しているため、効果が低くなる。
精度とロバスト性を改善するため,階層的検出手法を提案する。
論文 参考訳(メタデータ) (2024-10-25T12:42:07Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - The effect of stemming and lemmatization on Portuguese fake news text
classification [0.0]
インターネット、スマートフォン、ソーシャルメディアの普及に伴い、情報は迅速かつ容易に拡散されている。
情報の流れが大きくなって、偽情報や偽ニュースを広めようとしている人もいる。
いくつかのテクニックは、テキストデータを扱うときに良い結果に達するのに役立ちます。
論文 参考訳(メタデータ) (2023-10-17T15:26:40Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Fake News Detection: Experiments and Approaches beyond Linguistic
Features [0.0]
ニュース記事に関連付けられた信頼性情報とメタデータは、結果の改善に利用されてきた。
実験はまた、モデリングの正当性や証拠が、どのようにしてより良い結果をもたらすかを示す。
論文 参考訳(メタデータ) (2021-09-27T10:00:44Z) - How does Truth Evolve into Fake News? An Empirical Study of Fake News
Evolution [55.27685924751459]
偽ニュース進化過程を追跡する新しいデータセットであるフェイクニュース進化データセットを提示する。
私たちのデータセットは950のペアデータで構成され、それぞれが真実、偽ニュース、進化した偽ニュースを表す記事で構成されています。
進化中の特徴を観察し,誤情報技術,テキスト類似性,キーワードトップ10,分類精度,発話部分,感情特性について検討した。
論文 参考訳(メタデータ) (2021-03-10T09:01:34Z) - Connecting the Dots Between Fact Verification and Fake News Detection [21.564628184287173]
本稿では,事実検証と偽ニュース検出の点を結合する,シンプルで効果的な手法を提案する。
提案手法は,最近の事実検証モデルの成功を活用し,ゼロショットフェイクニュースの検出を可能にする。
論文 参考訳(メタデータ) (2020-10-11T09:28:52Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。