論文の概要: Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective
- arxiv url: http://arxiv.org/abs/2401.02421v1
- Date: Sat, 14 Oct 2023 13:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 09:59:07.003417
- Title: Neuronal Auditory Machine Intelligence (NEURO-AMI) In Perspective
- Title(参考訳): 神経聴覚マシンインテリジェンス(NEURO-AMI)の展望
- Authors: Emmanuel Ndidi Osegi
- Abstract要約: ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ニューラル・ニューラル・ニューラル・インテリジェンス(Neuro-AMI)の概要を述べる。
本稿では,ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)と競合するバイオインスパイアされた連続学習型ニューラル・ラーニング・ツールについて概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent developments in soft computing cannot be complete without noting
the contributions of artificial neural machine learning systems that draw
inspiration from real cortical tissue or processes that occur in human brain.
The universal approximability of such neural systems has led to its wide spread
use, and novel developments in this evolving technology has shown that there is
a bright future for such Artificial Intelligent (AI) techniques in the soft
computing field. Indeed, the proliferation of large and very deep networks of
artificial neural systems and the corresponding enhancement and development of
neural machine learning algorithms have contributed immensely to the
development of the modern field of Deep Learning as may be found in the well
documented research works of Lecun, Bengio and Hinton. However, the key
requirements of end user affordability in addition to reduced complexity and
reduced data learning size requirement means there still remains a need for the
synthesis of more cost-efficient and less data-hungry artificial neural
systems. In this report, we present an overview of a new competing bio-inspired
continual learning neural tool Neuronal Auditory Machine Intelligence
(Neuro-AMI) as a predictor detailing its functional and structural details,
important aspects on right applicability, some recent application use cases and
future research directions for current and prospective machine learning experts
and data scientists.
- Abstract(参考訳): ソフトコンピューティングの最近の進歩は、人間の脳で起こる実際の皮質組織やプロセスからインスピレーションを得た人工ニューラル機械学習システムの貢献を意識せずには完了できない。
このようなニューラルネットワークの普遍的な近似性は広範に普及し、この進化する技術における新たな発展は、ソフトコンピューティング分野におけるこのような人工知能(AI)技術には明るい未来があることを示している。
実際、人工知能システムの大規模かつ非常に深いネットワークの増殖と、それに対応するニューラルネットワークアルゴリズムの強化と開発は、lecun、bengio、および hintonのよく記録された研究成果に見られるように、現代のディープラーニング分野の発展に大きく貢献している。
しかし、複雑さの低減とデータ学習サイズの削減に加えて、エンドユーザの可利用性の鍵となる要件は、依然としてよりコスト効率が高く、データ不足の少ない人工ニューラルネットワークの合成の必要性である。
本稿では,ニューラル・オーディトリー・マシン・インテリジェンス(Neuro-AMI)を,その機能的・構造的詳細,適切な適用性に関する重要な側面,最近の応用事例,現在および将来的な機械学習専門家やデータサイエンティストのための今後の研究方向など,新たな競合するバイオインスピレーション付き連続学習神経ツールの概要を紹介する。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
人工ニューラルネットワークにおける脳にインスパイアされた学習表現について概説する。
これらのネットワークの能力を高めるために, シナプス可塑性などの生物学的に妥当な機構の統合について検討する。
論文 参考訳(メタデータ) (2023-05-18T18:34:29Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
論文 参考訳(メタデータ) (2021-05-15T19:49:32Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
スパイキングニューラルネットワークアルゴリズムは、計算と電力要求の一部を利用して高度な人工知能を実装することを約束する。
本稿では,スパイクに基づくニューロモルフィック技術の理論的研究について解説し,ハードウェアプロセッサ,ソフトウェアプラットフォーム,ニューロモルフィックセンシングデバイスの現状について概説する。
プログレクションパスは、現在の機械学習スペシャリストがスキルセットを更新し、現在の世代のディープニューラルネットワークからSNNへの分類または予測モデルを作成するために舗装されている。
論文 参考訳(メタデータ) (2020-07-10T20:54:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。