Boundary Chaos: Spectral Form Factor
- URL: http://arxiv.org/abs/2312.12452v2
- Date: Fri, 13 Sep 2024 12:53:59 GMT
- Title: Boundary Chaos: Spectral Form Factor
- Authors: Felix Fritzsch, Tomaž Prosen,
- Abstract summary: Random matrix spectral correlations are a defining feature of quantum chaos.
We study such correlations in a minimal model of chaotic many-body quantum dynamics.
We find they coincide with random matrix theory, possibly after a non-zero Thouless time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Random matrix spectral correlations is a defining feature of quantum chaos. Here, we study such correlations in a minimal model of chaotic many-body quantum dynamics where interactions are confined to the system's boundary, dubbed \textit{boundary chaos}, in terms of the spectral form factor and its fluctuations. We exactly calculate the latter in the limit of large local Hilbert space dimension $q$ for different classes of random boundary interactions and find it to coincide with random matrix theory, possibly after a non-zero Thouless time. The latter effect is due to a drastic enhancement of the spectral form factor, when integer time and system size fulfill a resonance condition. We compare our semiclassical (large $q$) results with numerics at small local Hilbert space dimension ($q=2,3$) and observe qualitatively similar features as in the semiclassical regime.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - How much entanglement is needed for emergent anyons and fermions? [9.27220088595816]
We provide quantitative characterizations of entanglement necessary for emergent anyons and fermions.
For systems with emergent fermions, despite that the ground state subspaces could be exponentially huge, we show that the GEM also scales linearly in the system size.
Our results also establish an intriguing link between quantum anomaly and entanglement.
arXiv Detail & Related papers (2024-05-13T17:47:15Z) - Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Universal spectral correlations in interacting chaotic few-body quantum
systems [0.0]
We study correlations in terms of the spectral form factor and its moments in interacting chaotic few- and many-body systems.
We find a universal transition from the non-interacting to the strongly interacting case, which can be described as a simple combination of these two limits.
arXiv Detail & Related papers (2023-02-20T12:49:59Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Transition to chaos in extended systems and their quantum impurity
models [0.0]
Chaos sets a fundamental limit to quantum-information processing schemes.
We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices.
arXiv Detail & Related papers (2022-05-02T18:01:09Z) - Analyticity constraints bound the decay of the spectral form factor [0.0]
Quantum chaos cannot develop faster than $lambda leq 2 pi/(hbar beta)$ for systems in thermal equilibrium.
We show that similar constraints also bound the decay of the spectral form factor (SFF)
The relation of the derived bound with other known bounds, including quantum speed limits, is discussed.
arXiv Detail & Related papers (2022-02-23T19:00:00Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z) - Spectral statistics in constrained many-body quantum chaotic systems [0.0]
We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints.
In particular, we analytically argue that in a system of length $L$ that conserves the $mth$ multipole moment, $t_mathrmTh$ scales subdiffusively as $L2(m+1)$.
arXiv Detail & Related papers (2020-09-24T17:59:57Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.