Testing the necessity of complex numbers in quantum mechanics with IBM
quantum computers
- URL: http://arxiv.org/abs/2205.01262v2
- Date: Thu, 20 Oct 2022 16:11:53 GMT
- Title: Testing the necessity of complex numbers in quantum mechanics with IBM
quantum computers
- Authors: Jarrett L. Lancaster and Nicholas M. Palladino
- Abstract summary: IBM quantum computers are used to test the necessity of complex numbers in the standard formulation of quantum mechanics.
Certain devices possess sufficiently small error rates to yield convincing evidence that a faithful description of quantum phenomena must involve complex numbers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: IBM quantum computers are used to perform a recently-proposed experiment
testing the necessity of complex numbers in the standard formulation of quantum
mechanics. While the noisier devices are incapable of delivering definitive
results, it is shown that certain devices possess sufficiently small error
rates to yield convincing evidence that a faithful description of quantum
phenomena must involve complex numbers. The results are consistent with
previous experiments and robust against daily calibration for several
freely-available devices. This work demonstrates the feasibility of using
cloud-based, noisy, intermediate-scale quantum devices to test certain
foundational features of quantum mechanics.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Swap Test-based Characterization of Quantum Processes in Universal
Quantum Computers [0.0]
Unreliable quantum processes in universal quantum computers still represent one of the the greatest challenges to be overcome.
In this article we verify whether a tool called Swap Test is able to identify decoherence to a quantum system.
arXiv Detail & Related papers (2022-08-04T21:31:49Z) - Propagation of errors and quantitative quantum simulation with quantum
advantage [0.0]
Many-body quench dynamics is one of the most promising candidates for early practical quantum advantage.
We analyse the requirements for quantitatively reliable quantum simulation beyond the capabilities of existing classical methods.
We conclude for models that are directly implementable that regimes of practical quantum advantage are attained in current experiments with analogue simulators.
arXiv Detail & Related papers (2022-04-28T17:05:51Z) - The randomized measurement toolbox [3.2095357952052854]
We review recently developed protocols for probing the properties of complex many-qubit systems.
In all these protocols, a quantum state is repeatedly prepared and measured in a randomly chosen basis.
We discuss a range of use cases that have already been realized in quantum devices.
arXiv Detail & Related papers (2022-03-21T22:33:18Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
Current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices.
Quantum tomography tries to reconstruct a quantum system's density matrix by a complete set of observables.
We propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables.
arXiv Detail & Related papers (2020-09-02T04:39:45Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.