論文の概要: Efficient algorithms for implementing incremental proximal-point methods
- arxiv url: http://arxiv.org/abs/2205.01457v2
- Date: Tue, 18 Jun 2024 05:35:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 05:43:26.243214
- Title: Efficient algorithms for implementing incremental proximal-point methods
- Title(参考訳): 漸進的近点法実装のための効率的なアルゴリズム
- Authors: Alex Shtoff,
- Abstract要約: 機械学習において、モデルトレーニングアルゴリズムは、各計算ステップにおけるトレーニングセットのごく一部を観察する。
いくつかの研究ストリームは、よく知られた近位作用素による勾配よりもコスト関数に関するより多くの情報を活用する試みである。
近似演算子のアルゴリズム効率とソフトウェアモジュール性の両方を達成するために凸双対性理論を利用する新しいアルゴリズムフレームワークを考案する。
- 参考スコア(独自算出の注目度): 0.3263412255491401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model training algorithms which observe a small portion of the training set in each computational step are ubiquitous in practical machine learning, and include both stochastic and online optimization methods. In the vast majority of cases, such algorithms typically observe the training samples via the gradients of the cost functions the samples incur. Thus, these methods exploit are the slope of the cost functions via their first-order approximations. To address limitations of gradient-based methods, such as sensitivity to step-size choice in the stochastic setting, or inability to use small function variability in the online setting, several streams of research attempt to exploit more information about the cost functions than just their gradients via the well-known proximal operators. However, implementing such methods in practice poses a challenge, since each iteration step boils down to computing the proximal operator, which may not be easy. In this work we devise a novel algorithmic framework, which exploits convex duality theory to achieve both algorithmic efficiency and software modularity of proximal operator implementations, in order to make experimentation with incremental proximal optimization algorithms accessible to a larger audience of researchers and practitioners, by reducing the gap between their theoretical description in research papers and their use in practice. We provide a reference Python implementation for the framework developed in this paper as an open source library at on https://github.com/alexshtf/inc_prox_pt/releases/tag/prox_pt_paper, along with examples which demonstrate our implementation on a variety of problems, and reproduce the numerical experiments in this paper. The pure Python reference implementation is not necessarily the most efficient, but is a basis for creating efficient implementations by combining Python with a native backend.
- Abstract(参考訳): 各計算ステップにおけるトレーニングセットのごく一部を観測するモデルトレーニングアルゴリズムは、実践的な機械学習においてユビキタスであり、確率最適化とオンライン最適化の両方の方法を含んでいる。
ほとんどの場合、そのようなアルゴリズムは、通常、コスト関数の勾配を通してトレーニングサンプルを観察する。
したがって、これらの手法は1次近似によるコスト関数の傾きである。
確率的セッティングにおけるステップサイズ選択に対する感度や、オンラインセッティングにおける小さな関数変数の使用能力の欠如など、勾配に基づく手法の限界に対処するために、よく知られた近位演算子を介して、コスト関数に関するより多くの情報を活用するための研究のストリームがいくつかある。
しかし、そのような手法を実際に実装することは、各反復ステップが、近位演算子を計算することと沸騰するので、容易ではないかもしれないため、課題となる。
本研究では,研究論文における理論記述のギャップを減らし,近位演算子実装のアルゴリズム効率とソフトウェアモジュール性の両方を達成するために,凸双対理論を利用した新しいアルゴリズムフレームワークを考案する。
本稿では,オープンソースのライブラリとして,https://github.com/alexshtf/inc_prox_pt/releases/tag/prox_pt_paperで開発されたフレームワークのリファレンスPython実装について紹介する。
純粋なPythonリファレンス実装は必ずしも最も効率的なものではないが、Pythonとネイティブバックエンドを組み合わせることで効率的な実装を作成するための基盤である。
関連論文リスト
- Training Artificial Neural Networks by Coordinate Search Algorithm [0.20971479389679332]
本稿では、ニューラルネットワークのトレーニングのための勾配自由座標探索(CS)アルゴリズムの効率的なバージョンを提案する。
提案アルゴリズムは、微分不可能なアクティベーション関数で使用することができ、多目的/マルチロス問題に適合する。
ANNの重みに対する最適値を求めることは、大規模な最適化問題である。
論文 参考訳(メタデータ) (2024-02-20T01:47:25Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - One-step differentiation of iterative algorithms [7.9495796547433395]
本稿では, 自動微分法としての一段階微分法, あるいはジャコビアンフリーバックプロパゲーションについて検討する。
両レベル最適化の結果とともに, 具体例を用いた完全理論的近似解析を行う。
論文 参考訳(メタデータ) (2023-05-23T07:32:37Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
我々は、対話型学習を実現可能な設定で検討し、最適な腕の識別からアクティブな分類に至るまでの問題に対処する一般的な枠組みを開発する。
我々は,最小限の値と対数係数とを一致させる,計算効率のよい新しいアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-11-09T02:33:36Z) - A Boosting Approach to Reinforcement Learning [59.46285581748018]
複雑度が状態数に依存しない意思決定プロセスにおける強化学習のための効率的なアルゴリズムについて検討する。
このような弱い学習手法の精度を向上させることができる効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-08-22T16:00:45Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z) - Self Normalizing Flows [65.73510214694987]
本稿では,各層における学習された近似逆数により,勾配の高価な項を置き換えることで,フローの正規化を訓練するための柔軟なフレームワークを提案する。
これにより、各レイヤの正確な更新の計算複雑性が$mathcalO(D3)$から$mathcalO(D2)$に削減される。
実験により,これらのモデルは非常に安定であり,正確な勾配値と類似したデータ可能性値に最適化可能であることが示された。
論文 参考訳(メタデータ) (2020-11-14T09:51:51Z) - Variance Reduction with Sparse Gradients [82.41780420431205]
SVRGやSpiderBoostのような分散還元法では、大きなバッチ勾配と小さなバッチ勾配が混在している。
我々は、新しい空間演算子:ランダムトップk演算子を導入する。
我々のアルゴリズムは、画像分類、自然言語処理、スパース行列分解など様々なタスクにおいて、一貫してSpiderBoostより優れています。
論文 参考訳(メタデータ) (2020-01-27T08:23:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。