論文の概要: Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers
- arxiv url: http://arxiv.org/abs/2111.04915v1
- Date: Tue, 9 Nov 2021 02:33:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 14:42:49.710064
- Title: Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers
- Title(参考訳): 実現可能な環境下での実践的、おそらく正しい対話型学習 : 真の信念の力
- Authors: Julian Katz-Samuels, Blake Mason, Kevin Jamieson, Rob Nowak
- Abstract要約: 我々は、対話型学習を実現可能な設定で検討し、最適な腕の識別からアクティブな分類に至るまでの問題に対処する一般的な枠組みを開発する。
我々は,最小限の値と対数係数とを一致させる,計算効率のよい新しいアルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 12.09273192079783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider interactive learning in the realizable setting and develop a
general framework to handle problems ranging from best arm identification to
active classification. We begin our investigation with the observation that
agnostic algorithms \emph{cannot} be minimax-optimal in the realizable setting.
Hence, we design novel computationally efficient algorithms for the realizable
setting that match the minimax lower bound up to logarithmic factors and are
general-purpose, accommodating a wide variety of function classes including
kernel methods, H{\"o}lder smooth functions, and convex functions. The sample
complexities of our algorithms can be quantified in terms of well-known
quantities like the extended teaching dimension and haystack dimension.
However, unlike algorithms based directly on those combinatorial quantities,
our algorithms are computationally efficient. To achieve computational
efficiency, our algorithms sample from the version space using Monte Carlo
"hit-and-run" algorithms instead of maintaining the version space explicitly.
Our approach has two key strengths. First, it is simple, consisting of two
unifying, greedy algorithms. Second, our algorithms have the capability to
seamlessly leverage prior knowledge that is often available and useful in
practice. In addition to our new theoretical results, we demonstrate
empirically that our algorithms are competitive with Gaussian process UCB
methods.
- Abstract(参考訳): 我々は,対話型学習を実現可能な設定で検討し,最善のアーム識別からアクティブ分類まで幅広い問題を扱うための汎用フレームワークの開発を行った。
我々は,非依存アルゴリズム \emph{cannot} が極小最適であることを示すことから,本研究を開始した。
Hence, we design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors and are general-purpose, accommodating a wide variety of function classes including kernel methods, H{\"o}lder smooth functions, and convex functions. The sample complexities of our algorithms can be quantified in terms of well-known quantities like the extended teaching dimension and haystack dimension. However, unlike algorithms based directly on those combinatorial quantities, our algorithms are computationally efficient. To achieve computational efficiency, our algorithms sample from the version space using Monte Carlo "hit-and-run" algorithms instead of maintaining the version space explicitly.
私たちのアプローチには2つの強みがあります。
まず、それは単純で、2つの統一された欲望のアルゴリズムからなる。
第2に、私たちのアルゴリズムは、しばしば利用可能で実用的である事前知識をシームレスに活用する能力を持っています。
新しい理論結果に加えて,我々のアルゴリズムがガウス過程 ucb 法と競合することを実証的に証明した。
関連論文リスト
- Learning Arithmetic Formulas in the Presence of Noise: A General
Framework and Applications to Unsupervised Learning [4.10375234787249]
教師なし学習問題に対する効率的なアルゴリズム設計のための枠組みを提案する。
我々のフレームワークは,雑音の存在下で演算回路を学習するメタアルゴリズムに基づいている。
論文 参考訳(メタデータ) (2023-11-13T12:26:25Z) - Fixed-Budget Real-Valued Combinatorial Pure Exploration of Multi-Armed
Bandit [65.268245109828]
このアルゴリズムは,アクションクラスのサイズが指数関数的に大きい場合でも,最良のアクションを識別できる最初のアルゴリズムである。
CSAアルゴリズムの誤差確率の上限は指数の対数係数までの下界と一致することを示す。
提案手法を従来手法と実験的に比較し,アルゴリズムの性能が向上したことを示す。
論文 参考訳(メタデータ) (2023-10-24T09:47:32Z) - Dual Algorithmic Reasoning [9.701208207491879]
本稿では,基礎となるアルゴリズム問題の双対性を利用してアルゴリズムを学習することを提案する。
アルゴリズム学習における最適化問題の2つの定義を同時に学習することで、より良い学習が可能になることを実証する。
次に、難易度の高い脳血管分類タスクにデプロイすることで、二元アルゴリズム推論の現実的な実用性を検証する。
論文 参考訳(メタデータ) (2023-02-09T08:46:23Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and
Hierarchical Spatial Clustering [6.4805900740861]
HDBSCAN$*$のための私達のアルゴリズムの仕事そしてスペースを減らすために十分分離の新しい概念を導入します。
我々のアルゴリズムは理論的に効率的であることを示す: 彼らは逐次対応の作業(操作数)と多対数深さ(並列時間)を持っている。
48コアマシンを用いた大規模実世界および合成データセットの実験により、我々の最速のアルゴリズムは11.13-55.89x、既存の並列アルゴリズムを少なくとも桁違いに上回った。
論文 参考訳(メタデータ) (2021-04-02T16:05:00Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
本稿では,エッジファクター,非プロジェクティブ・スパンニングツリーモデルにおいて,一階期待と二階期待の重要なケースに対する統一アルゴリズムを提案する。
我々のアルゴリズムは勾配と期待の基本的な関係を利用しており、効率的なアルゴリズムを導出することができる。
論文 参考訳(メタデータ) (2020-08-29T14:58:26Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
基本的なクラスタリング問題に対して,効率的な微分プライベートアルゴリズムを提案する。
この結果から,SampleとAggregateのプライバシーフレームワークのアルゴリズムの改善が示唆された。
1-Clusterアルゴリズムで使用されるツールの1つは、ClosestPairのより高速な量子アルゴリズムを適度な次元で得るために利用できる。
論文 参考訳(メタデータ) (2020-08-18T16:22:06Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
ネットワークのノードにまたがるスムーズな凸関数の和を分散化最小化する作業について検討する。
本稿では,この分散最適化問題に対する2つの新しいアルゴリズムを提案し,複雑性を保証する。
論文 参考訳(メタデータ) (2020-06-21T11:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。