論文の概要: A unified view on Self-Organizing Maps (SOMs) and Stochastic Neighbor
Embedding (SNE)
- arxiv url: http://arxiv.org/abs/2205.01492v1
- Date: Tue, 3 May 2022 13:47:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-04 18:00:11.292406
- Title: A unified view on Self-Organizing Maps (SOMs) and Stochastic Neighbor
Embedding (SNE)
- Title(参考訳): 自己組織化マップ(SOMs)と確率近傍埋め込み(SNE)の統一的視点
- Authors: Thibaut Kulak, Anthony Fillion, Fran\c{c}ois Blayo
- Abstract要約: 自己組織化マップ (SOM) と近隣埋め込み (SNE) はともに共通の数学的枠組みから導出可能であることを示す。
2つのデータセット上でSOMとSNEを定量的に比較し、両方のアプローチを利用するための今後の研究の道筋について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a unified view on two widely used data visualization techniques:
Self-Organizing Maps (SOMs) and Stochastic Neighbor Embedding (SNE). We show
that they can both be derived from a common mathematical framework. Leveraging
this formulation, we propose to compare SOM and SNE quantitatively on two
datasets, and discuss possible avenues for future work to take advantage of
both approaches.
- Abstract(参考訳): 本稿では,SOM (Self-Organizing Maps) とSNE (Stochastic Neighbor Embedding) という,広く利用されている2つのデータ可視化技術について統一的な視点を提案する。
両者が共通の数学的枠組みから導出可能であることを示す。
この定式化を活用して,SOMとSNEを2つのデータセットで定量的に比較し,両手法の活用に向けた今後の課題について議論する。
関連論文リスト
- Handbook on Leveraging Lines for Two-View Relative Pose Estimation [82.72686460985297]
本稿では,画像ペア間の相対的なポーズを,点,線,およびそれらの一致をハイブリッド方式で共同で推定する手法を提案する。
我々のハイブリッドフレームワークは、すべての構成の利点を組み合わせて、挑戦的な環境で堅牢で正確な見積もりを可能にします。
論文 参考訳(メタデータ) (2023-09-27T21:43:04Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Opening the black-box of Neighbor Embedding with Hotelling's T2
statistic and Q-residuals [1.6058099298620425]
隣接埋め込み(NE)技術は、高次元データの局所構造やトポロジーをよりよく保存する傾向がある。
しかし、局所的な構造を維持する能力は、解釈可能性の犠牲となる。
本稿では,データポイント群間の差別的特徴を識別する手法について述べる。
論文 参考訳(メタデータ) (2022-09-05T14:33:42Z) - ENS-t-SNE: Embedding Neighborhoods Simultaneously t-SNE [1.9573380763700716]
ENS-t-SNEは、t-Stochastic Neighborhood Embeddingアプローチを同時に一般化する。
ENS-t-SNEの3D埋め込みにおける異なる視点を使用することで、同じ高次元データセット内の異なるタイプのクラスタを視覚化することができる。
論文 参考訳(メタデータ) (2022-05-24T02:02:05Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - Stochastic Cluster Embedding [14.485496311015398]
Neighbor Embedding (NE)は、データ項目間のペアの類似性を維持することを目的としている。
Neighbor Embedding (SNE)のようなNEメソッドは、クラスタなどの大規模パターンを隠蔽する可能性がある。
隣り合う埋め込みに基づく新しいクラスタ可視化手法を提案する。
論文 参考訳(メタデータ) (2021-08-18T07:07:28Z) - PRASEMap: A Probabilistic Reasoning and Semantic Embedding based
Knowledge Graph Alignment System [22.6762874669173]
PRASEMapは教師なしのKGアライメントシステムで、確率推論(PR)とセマンティック埋め込み(SE)の両方の手法でマッピングを反復的に計算する。
PRASEMapは、SEモジュールとして様々な埋め込みベースのKGアライメントアプローチをサポートし、簡単なヒューマンコンピュータインタラクションを可能にする。
このデモでは、ユーザフレンドリーなインターフェースを備えたスタンドアロンのWebアプリケーションを通じて、これらの機能を紹介している。
論文 参考訳(メタデータ) (2021-06-16T14:06:09Z) - Learning Gaussian Graphical Models with Latent Confounders [74.72998362041088]
我々は、グラフィカルモデルにおける推論のための2つの戦略を、潜伏した共同創設者と比較し、対比する。
これら2つのアプローチは、類似した目標を持っているが、それらは共起に関する異なる仮定によって動機付けられている。
これら2つのアプローチの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-14T00:53:03Z) - Hierarchical Optimal Transport for Robust Multi-View Learning [97.21355697826345]
2つの仮定は実際には疑わしいが、これは多視点学習の適用を制限する。
本稿では,これら2つの仮定への依存性を軽減するために,階層的最適輸送法を提案する。
HOT法は教師なし学習と半教師付き学習の両方に適用でき、実験結果から、合成タスクと実世界のタスクの両方で堅牢に動作することが示された。
論文 参考訳(メタデータ) (2020-06-04T22:24:45Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
本稿では,最適コンセンサスを近似する凝集分析法を提案する。
本稿では,制約付きラプラシアンランクに基づくANN(Agglomerative Neural Network)を用いて,マルチビューデータをクラスタリングする。
4つの一般的なデータセットに対する最先端のマルチビュークラスタリング手法に対する我々の評価は、ANNの有望なビュー・コンセンサス分析能力を示している。
論文 参考訳(メタデータ) (2020-05-12T05:39:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。