On the uncertainty principle of neural networks
- URL: http://arxiv.org/abs/2205.01493v4
- Date: Thu, 16 Jan 2025 11:16:40 GMT
- Title: On the uncertainty principle of neural networks
- Authors: Jun-Jie Zhang, Dong-Xiao Zhang, Jian-Nan Chen, Long-Gang Pang, Deyu Meng,
- Abstract summary: We show that neural networks are subject to an uncertainty relation, which manifests as a fundamental limitation in their ability to simultaneously achieve high accuracy and robustness against adversarial attacks.
Our findings reveal that the complementarity principle, a cornerstone of quantum physics, applies to neural networks, imposing fundamental limits on their capabilities in simultaneous learning of conjugate features.
- Score: 36.098205818550554
- License:
- Abstract: In this study, we explore the inherent trade-off between accuracy and robustness in neural networks, drawing an analogy to the uncertainty principle in quantum mechanics. We propose that neural networks are subject to an uncertainty relation, which manifests as a fundamental limitation in their ability to simultaneously achieve high accuracy and robustness against adversarial attacks. Through mathematical proofs and empirical evidence, we demonstrate that this trade-off is a natural consequence of the sharp boundaries formed between different class concepts during training. Our findings reveal that the complementarity principle, a cornerstone of quantum physics, applies to neural networks, imposing fundamental limits on their capabilities in simultaneous learning of conjugate features. Meanwhile, our work suggests that achieving human-level intelligence through a single network architecture or massive datasets alone may be inherently limited. Our work provides new insights into the theoretical foundations of neural network vulnerability and opens up avenues for designing more robust neural network architectures.
Related papers
- Emergent weight morphologies in deep neural networks [0.0]
We show that training deep neural networks gives rise to emergent weight morphologies independent of the training data.
Our work demonstrates emergence in the training of deep neural networks, which impacts the achievable performance of deep neural networks.
arXiv Detail & Related papers (2025-01-09T19:48:51Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
Neural networks demonstrate inherent vulnerability to small, non-random perturbations, emerging as adversarial attacks.
A mathematical congruence manifests between this mechanism and the quantum physics' uncertainty principle, casting light on a hitherto unanticipated interdisciplinarity.
arXiv Detail & Related papers (2024-02-16T02:11:27Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning [71.14237199051276]
We consider classical distribution-agnostic framework and algorithms minimising empirical risks.
We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks is extremely challenging.
arXiv Detail & Related papers (2023-09-13T16:33:27Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Neural Bayesian Network Understudy [13.28673601999793]
We show that a neural network can be trained to output conditional probabilities, providing approximately the same functionality as a Bayesian Network.
We propose two training strategies that allow encoding the independence relations inferred from a given causal structure into the neural network.
arXiv Detail & Related papers (2022-11-15T15:56:51Z) - What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness? [0.0]
We study adversarial examples of trained neural networks through analytical tools afforded by recent theory advances connecting neural networks and kernel methods.
We show how NTKs allow to generate adversarial examples in a training-free'' fashion, and demonstrate that they transfer to fool their finite-width neural net counterparts in the lazy'' regime.
arXiv Detail & Related papers (2022-10-11T16:11:48Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - A neural network model of perception and reasoning [0.0]
We show that a simple set of biologically consistent organizing principles confer these capabilities to neuronal networks.
We implement these principles in a novel machine learning algorithm, based on concept construction instead of optimization, to design deep neural networks that reason with explainable neuron activity.
arXiv Detail & Related papers (2020-02-26T06:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.