Conditional $\beta$-VAE for De Novo Molecular Generation
- URL: http://arxiv.org/abs/2205.01592v1
- Date: Sun, 1 May 2022 17:38:05 GMT
- Title: Conditional $\beta$-VAE for De Novo Molecular Generation
- Authors: Ryan J Richards and Austen M Groener
- Abstract summary: We present a recurrent, conditional $beta$-VAE which disentangles the latent space to enhance post hoc molecule optimization.
We create a mutual information driven training protocol and data augmentations to both increase molecular validity and promote longer sequence generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning has significantly advanced and accelerated de novo molecular
generation. Generative networks, namely Variational Autoencoders (VAEs) can not
only randomly generate new molecules, but also alter molecular structures to
optimize specific chemical properties which are pivotal for drug-discovery.
While VAEs have been proposed and researched in the past for pharmaceutical
applications, they possess deficiencies which limit their ability to both
optimize properties and decode syntactically valid molecules. We present a
recurrent, conditional $\beta$-VAE which disentangles the latent space to
enhance post hoc molecule optimization. We create a mutual information driven
training protocol and data augmentations to both increase molecular validity
and promote longer sequence generation. We demonstrate the efficacy of our
framework on the ZINC-250k dataset, achieving SOTA unconstrained optimization
results on the penalized LogP (pLogP) and QED scores, while also matching
current SOTA results for validity, novelty and uniqueness scores for random
generation. We match the current SOTA on QED for top-3 molecules at 0.948,
while setting a new SOTA for pLogP optimization at 104.29, 90.12, 69.68 and
demonstrating improved results on the constrained optimization task.
Related papers
- Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation [0.0]
We present an innovative approach, Latent Evolutionary Optimization for Molecule Generation (LEOMol)
LEOMol is a generative modeling framework for the efficient generation of optimized molecules.
Our approach consistently demonstrates superior performance compared to previous state-of-the-art models.
arXiv Detail & Related papers (2024-07-02T13:42:21Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - Distributed Reinforcement Learning for Molecular Design: Antioxidant
case [0.20971479389679337]
DA-MolDQN is a distributed reinforcement learning algorithm for antioxidants.
It is 100x faster than previous algorithms and can discover new optimized molecules from proprietary and public antioxidants.
arXiv Detail & Related papers (2023-12-03T03:23:13Z) - Gradual Optimization Learning for Conformational Energy Minimization [69.36925478047682]
Gradual Optimization Learning Framework (GOLF) for energy minimization with neural networks significantly reduces the required additional data.
Our results demonstrate that the neural network trained with GOLF performs on par with the oracle on a benchmark of diverse drug-like molecules.
arXiv Detail & Related papers (2023-11-05T11:48:08Z) - Balancing Exploration and Exploitation: Disentangled $\beta$-CVAE in De
Novo Drug Design [0.0]
We propose a molecular-graph $beta$-CVAE model for de novo drug design.
We optimised the octanol-water partition coefficient (ClogP), molar refractivity (CMR), quantitative estimate of drug-likeness (QED), and synthetic accessibility score (SAS)
Our model generated an average of 30.07% $pm$ 0.01% molecules for both desired properties.
arXiv Detail & Related papers (2023-06-02T16:58:15Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
We propose a cost-effective evolution strategy in latent space, which optimize the molecular latent representation vectors.
We adopt a pre-trained molecular generative model to map the latent and observation spaces.
We conduct extensive experiments on multiple optimization tasks comparing the proposed framework to several advanced techniques.
arXiv Detail & Related papers (2021-11-30T11:02:18Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.