Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation
- URL: http://arxiv.org/abs/2407.13779v1
- Date: Tue, 2 Jul 2024 13:42:21 GMT
- Title: Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation
- Authors: Siddartha Reddy N, Sai Prakash MV, Varun V, Vishal Vaddina, Saisubramaniam Gopalakrishnan,
- Abstract summary: We present an innovative approach, Latent Evolutionary Optimization for Molecule Generation (LEOMol)
LEOMol is a generative modeling framework for the efficient generation of optimized molecules.
Our approach consistently demonstrates superior performance compared to previous state-of-the-art models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lead optimization is a pivotal task in the drug design phase within the drug discovery lifecycle. The primary objective is to refine the lead compound to meet specific molecular properties for progression to the subsequent phase of development. In this work, we present an innovative approach, Latent Evolutionary Optimization for Molecule Generation (LEOMol), a generative modeling framework for the efficient generation of optimized molecules. LEOMol leverages Evolutionary Algorithms, such as Genetic Algorithm and Differential Evolution, to search the latent space of a Variational AutoEncoder (VAE). This search facilitates the identification of the target molecule distribution within the latent space. Our approach consistently demonstrates superior performance compared to previous state-of-the-art models across a range of constrained molecule generation tasks, outperforming existing models in all four sub-tasks related to property targeting. Additionally, we suggest the importance of including toxicity in the evaluation of generative models. Furthermore, an ablation study underscores the improvements that our approach provides over gradient-based latent space optimization methods. This underscores the effectiveness and superiority of LEOMol in addressing the inherent challenges in constrained molecule generation while emphasizing its potential to propel advancements in drug discovery.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Deep Lead Optimization: Leveraging Generative AI for Structural Modification [12.167178956742113]
This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD.
We introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization.
arXiv Detail & Related papers (2024-04-30T03:17:42Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
We develop a versatile 'plug-in' molecular generation model that incorporates objectives related to target affinity, drug-likeness, and synthesizability.
We identify PSO-ENP as the optimal variant for multi-objective molecular generation and optimization.
arXiv Detail & Related papers (2024-04-10T02:37:24Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
We propose a cost-effective evolution strategy in latent space, which optimize the molecular latent representation vectors.
We adopt a pre-trained molecular generative model to map the latent and observation spaces.
We conduct extensive experiments on multiple optimization tasks comparing the proposed framework to several advanced techniques.
arXiv Detail & Related papers (2021-11-30T11:02:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
We argue that existing generative methods are limited in their ability to favourably shift the distributions of molecular properties during optimization.
We propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically-accessible drug-like molecules.
arXiv Detail & Related papers (2020-04-29T16:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.