論文の概要: Object Class Aware Video Anomaly Detection through Image Translation
- arxiv url: http://arxiv.org/abs/2205.01706v1
- Date: Tue, 3 May 2022 18:04:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 13:35:19.387187
- Title: Object Class Aware Video Anomaly Detection through Image Translation
- Title(参考訳): 画像翻訳によるオブジェクトクラス認識ビデオ異常検出
- Authors: Mohammad Baradaran, Robert Bergevin
- Abstract要約: 本稿では、画像翻訳タスクを通して正常な外見と動きパターンを学習する2ストリームオブジェクト認識型VAD手法を提案する。
その結果,従来の手法の大幅な改善により,本手法による検出は完全に説明可能となり,異常はフレーム内で正確に局所化されることがわかった。
- 参考スコア(独自算出の注目度): 1.2944868613449219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised video anomaly detection (VAD) methods formulate the task of
anomaly detection as detection of deviations from the learned normal patterns.
Previous works in the field (reconstruction or prediction-based methods) suffer
from two drawbacks: 1) They focus on low-level features, and they (especially
holistic approaches) do not effectively consider the object classes. 2)
Object-centric approaches neglect some of the context information (such as
location). To tackle these challenges, this paper proposes a novel two-stream
object-aware VAD method that learns the normal appearance and motion patterns
through image translation tasks. The appearance branch translates the input
image to the target semantic segmentation map produced by Mask-RCNN, and the
motion branch associates each frame with its expected optical flow magnitude.
Any deviation from the expected appearance or motion in the inference stage
shows the degree of potential abnormality. We evaluated our proposed method on
the ShanghaiTech, UCSD-Ped1, and UCSD-Ped2 datasets and the results show
competitive performance compared with state-of-the-art works. Most importantly,
the results show that, as significant improvements to previous methods,
detections by our method are completely explainable and anomalies are localized
accurately in the frames.
- Abstract(参考訳): 半教師付きビデオ異常検出(vad)法は、学習した正規パターンからのずれ検出として異常検出のタスクを定式化する。
現場での以前の作業(再構成や予測に基づく手法)は2つの欠点に悩まされる。
1)低レベルの機能に焦点を当てており、(特に全体論的アプローチ)オブジェクトクラスを効果的に考慮していません。
2) オブジェクト中心のアプローチは、いくつかのコンテキスト情報(位置など)を無視します。
そこで,本稿では,画像翻訳の課題を通して正常な外観と運動パターンを学習する2ストリーム物体認識vad法を提案する。
外観枝は、入力画像から mask-rcnn が生成した目標意味セグメンテーションマップに変換し、動き枝は各フレームに期待される光学的流れの大きさを関連付ける。
推測段階における期待された外観や動きからの偏差は、潜在的な異常の程度を示す。
提案手法を上海技術, UCSD-Ped1, UCSD-Ped2データセットで評価し, 現状の成果と比較した。
以上の結果から,従来の手法の大幅な改善により,本手法による検出は完全に説明可能となり,異常がフレーム内で正確に局所化されることが示唆された。
関連論文リスト
- Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
本稿では、事前学習された視覚言語モデル(VLM)に基づく、弱教師付きビデオ異常検出および局所化のための時間的プロンプト埋め込み(WSVADL)を学習する新しい手法を提案する。
提案手法は,WSVADLタスクの3つの公開ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-12T03:31:29Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Dual-Image Enhanced CLIP for Zero-Shot Anomaly Detection [58.228940066769596]
本稿では,統合視覚言語スコアリングシステムを活用したデュアルイメージ強化CLIP手法を提案する。
提案手法は,画像のペアを処理し,それぞれを視覚的参照として利用することにより,視覚的コンテキストによる推論プロセスを強化する。
提案手法は視覚言語による関節異常検出の可能性を大幅に活用し,従来のSOTA法と同等の性能を示す。
論文 参考訳(メタデータ) (2024-05-08T03:13:20Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Future Video Prediction from a Single Frame for Video Anomaly Detection [0.38073142980732994]
ビデオ異常検出(VAD)はコンピュータビジョンにおいて重要であるが難しい課題である。
本稿では,ビデオ異常検出のための新しいプロキシタスクとして,将来のフレーム予測プロキシタスクを紹介する。
このプロキシタスクは、より長い動きパターンを学習する従来の手法の課題を軽減する。
論文 参考訳(メタデータ) (2023-08-15T14:04:50Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
本稿では, 主流の擬似ラベリングフレームワーク上に構築された, SOOD と呼ばれる, 半教師付きオブジェクト指向物体検出モデルを提案する。
提案した2つの損失をトレーニングした場合,SOODはDOTA-v1.5ベンチマークの様々な設定下で,最先端のSSOD法を超越することを示した。
論文 参考訳(メタデータ) (2023-04-10T11:10:42Z) - UN-AVOIDS: Unsupervised and Nonparametric Approach for Visualizing
Outliers and Invariant Detection Scoring [2.578242050187029]
UN-AVOIDS(UN-AVOIDS)は、人間のプロセス)と外れ値の検出(アルゴリズムプロセス)の両方に対して、教師なしかつ非パラメトリックなアプローチである。
近傍累積密度関数(NCDF)として導入した新しい空間にデータを変換する。
AUCに関しては、UN-AVOIDSはほぼ総合的な勝者である。
論文 参考訳(メタデータ) (2021-11-19T02:31:06Z) - Occlusion-Robust Object Pose Estimation with Holistic Representation [42.27081423489484]
State-of-the-art(SOTA)オブジェクトのポーズ推定器は2段階のアプローチを取る。
我々は,新しいブロック・アンド・ブラックアウトバッチ拡張技術を開発した。
また,総合的なポーズ表現学習を促進するためのマルチ精度監視アーキテクチャも開発している。
論文 参考訳(メタデータ) (2021-10-22T08:00:26Z) - Local Anomaly Detection in Videos using Object-Centric Adversarial
Learning [12.043574473965318]
本稿では,ビデオ中のフレームレベルの局所異常を検出するために,オブジェクト領域のみを必要とする2段階のオブジェクト中心対向フレームワークを提案する。
第1段階は、現在の外観と、通常と見なされる場面における物体の過去の勾配画像との対応を学習することで、現在の外観から過去の勾配を生成できるか、逆から生成することができる。
第2段階は、実際の画像と生成された画像(外観と過去の勾配)の間の部分再構成誤差を通常の物体の挙動で抽出し、対向的に判別器を訓練する。
論文 参考訳(メタデータ) (2020-11-13T02:02:37Z) - Interpolation-based semi-supervised learning for object detection [44.37685664440632]
オブジェクト検出のための補間に基づく半教師付き学習手法を提案する。
提案した損失は、半教師付き学習と教師付き学習の性能を劇的に向上させる。
論文 参考訳(メタデータ) (2020-06-03T10:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。