Improved Multi-Scale Grid Rendering of Point Clouds for Radar Object
Detection Networks
- URL: http://arxiv.org/abs/2305.15836v2
- Date: Sun, 3 Sep 2023 12:05:45 GMT
- Title: Improved Multi-Scale Grid Rendering of Point Clouds for Radar Object
Detection Networks
- Authors: Daniel K\"ohler, Maurice Quach, Michael Ulrich, Frank Meinl, Bastian
Bischoff and Holger Blume
- Abstract summary: The transfer from irregular point cloud data to a dense grid structure is often associated with a loss of information.
We propose a novel architecture, multi-scale KPPillarsBEV, that aims to mitigate the negative effects of grid rendering.
- Score: 3.3787383461150045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Architectures that first convert point clouds to a grid representation and
then apply convolutional neural networks achieve good performance for
radar-based object detection. However, the transfer from irregular point cloud
data to a dense grid structure is often associated with a loss of information,
due to the discretization and aggregation of points. In this paper, we propose
a novel architecture, multi-scale KPPillarsBEV, that aims to mitigate the
negative effects of grid rendering. Specifically, we propose a novel grid
rendering method, KPBEV, which leverages the descriptive power of kernel point
convolutions to improve the encoding of local point cloud contexts during grid
rendering. In addition, we propose a general multi-scale grid rendering
formulation to incorporate multi-scale feature maps into convolutional
backbones of detection networks with arbitrary grid rendering methods. We
perform extensive experiments on the nuScenes dataset and evaluate the methods
in terms of detection performance and computational complexity. The proposed
multi-scale KPPillarsBEV architecture outperforms the baseline by 5.37% and the
previous state of the art by 2.88% in Car AP4.0 (average precision for a
matching threshold of 4 meters) on the nuScenes validation set. Moreover, the
proposed single-scale KPBEV grid rendering improves the Car AP4.0 by 2.90% over
the baseline while maintaining the same inference speed.
Related papers
- Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
We introduce a deep-learning based method to convolve radar detections into point clouds.
We adapt this algorithm to radar-specific properties through distance-dependent clustering and pre-processing of input point clouds.
Our network outperforms state-of-the-art approaches that are based on PointNet++ on the task of semantic segmentation of radar point clouds.
arXiv Detail & Related papers (2023-05-22T07:09:35Z) - Improved Orientation Estimation and Detection with Hybrid Object
Detection Networks for Automotive Radar [1.53934570513443]
We present novel hybrid architectures that combine grid- and point-based processing to improve radar-based object detection networks.
We show that a point-based model can extract neighborhood features, leveraging the exact relative positions of points, before grid rendering.
This has significant benefits for a following convolutional detection backbone.
arXiv Detail & Related papers (2022-05-03T06:29:03Z) - Deep Point Cloud Reconstruction [74.694733918351]
Point cloud obtained from 3D scanning is often sparse, noisy, and irregular.
To cope with these issues, recent studies have been separately conducted to densify, denoise, and complete inaccurate point cloud.
We propose a deep point cloud reconstruction network consisting of two stages: 1) a 3D sparse stacked-hourglass network as for the initial densification and denoising, 2) a refinement via transformers converting the discrete voxels into 3D points.
arXiv Detail & Related papers (2021-11-23T07:53:28Z) - CpT: Convolutional Point Transformer for 3D Point Cloud Processing [10.389972581905]
We present CpT: Convolutional point Transformer - a novel deep learning architecture for dealing with the unstructured nature of 3D point cloud data.
CpT is an improvement over existing attention-based Convolutions Neural Networks as well as previous 3D point cloud processing transformers.
Our model can serve as an effective backbone for various point cloud processing tasks when compared to the existing state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-21T17:45:55Z) - Learning point embedding for 3D data processing [2.12121796606941]
Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
arXiv Detail & Related papers (2021-07-19T00:25:28Z) - PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector
Representation for 3D Object Detection [100.60209139039472]
We propose the PointVoxel Region based Convolution Neural Networks (PVRCNNs) for accurate 3D detection from point clouds.
Our proposed PV-RCNNs significantly outperform previous state-of-the-art 3D detection methods on both the Open dataset and the highly-competitive KITTI benchmark.
arXiv Detail & Related papers (2021-01-31T14:51:49Z) - Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds [2.924868086534434]
This paper introduces a novel approach for 3D point cloud semantic segmentation that exploits multiple projections of the point cloud.
Our Multi-Projection Fusion framework analyzes spherical and bird's-eye view projections using two separate highly-efficient 2D fully convolutional models.
arXiv Detail & Related papers (2020-11-03T19:40:43Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.