論文の概要: Quantum Computing Approaches for Mission Covering Optimization
- arxiv url: http://arxiv.org/abs/2205.02212v1
- Date: Wed, 4 May 2022 17:46:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 08:57:00.239281
- Title: Quantum Computing Approaches for Mission Covering Optimization
- Title(参考訳): ミッションカバー最適化のための量子コンピューティング手法
- Authors: Massimiliano Cutugno, Annarita Giani, Paul M. Alsing, Laura Wessing,
and Austars Schnore
- Abstract要約: 本稿では,量子アニーリング法と量子交換演算子Ansatzを用いた制約付き最適化問題の定式化を比較した。
2つの異なるMCOシナリオの結果を提供し、その結果を分析します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study quantum computing algorithms for solving certain constrained
resource allocation problems we coin as Mission Covering Optimization (MCO). We
compare formulations of constrained optimization problems using Quantum
Annealing techniques and the Quantum Alternating Operator Ansatz (Hadfield et
al. arXiv:1709.03489v2, a generalized algorithm of the Quantum Approximate
Optimization Algorithm, Farhi et al. arXiv:1411.4028v1) on D-Wave and IBM
machines respectively using the following metrics: cost, timing, constraints
held, and qubits used. We provide results from two different MCO scenarios and
analyze results.
- Abstract(参考訳): 我々は、ミッションカバー最適化(mco)と呼ばれる制約付きリソース割り当て問題を解決するために量子コンピューティングアルゴリズムを研究した。
我々は,量子アニーリング法と量子交換演算子 Ansatz (Hadfield et al. arXiv:1709.03489v2, Quantum Approximate Optimization Algorithm, Farhi et al. arXiv:1411.4028v1) を用いたD-WaveおよびIBMマシン上の制約最適化問題の定式化を比較した。
2つの異なるMCOシナリオの結果を提供し、その結果を分析します。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Recursive Quantum Approximate Optimization Algorithm for the MAX-CUT
problem on Complete graphs [1.90365714903665]
量子近似最適化アルゴリズムは、MAX-CUT問題のような最適化問題を近似的に解くために設計されたハイブリッド量子古典的変分アルゴリズムである。
近い将来の量子応用の可能性にもかかわらず、量子近似最適化アルゴリズムはMAX-CUT問題を解くための制限があることが知られている。
論文 参考訳(メタデータ) (2022-11-28T23:51:02Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
変分量子アルゴリズムは、デジタル量子コンピュータを用いた最適化問題の解法として興味深い可能性を提供する。
しかし、そのようなアルゴリズムにおける達成可能な性能と量子相関の役割は未だ不明である。
我々は、IBM量子チップと同様に、システマティックな手順で高度に圧縮された状態が生成されるかを数値的に示す。
論文 参考訳(メタデータ) (2022-05-20T18:00:06Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Quantum Optimization Heuristics with an Application to Knapsack Problems [5.866941279460248]
本稿では,量子近似最適化アルゴリズム(QAOA)を制約付き最適化問題に適合させる2つの手法を提案する。
最初のテクニックでは、初期の量子状態と混合操作を定義し、量子最適化アルゴリズムを調整して、この初期欲求解に関する可能な解を探索する方法が述べられている。
第2の手法は、グリーディ溶液の周りの局所的なミニマを避けるために、量子探索に使用される。
論文 参考訳(メタデータ) (2021-08-19T17:22:44Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Approaches to Constrained Quantum Approximate Optimization [0.4588028371034407]
我々は、制約付き最適化問題の近似解を見つけるために、異なる量子アプローチのコストと利点について研究する。
DQVA(Dynamic Quantum Variational Ansatz)に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-13T19:51:12Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
本稿では,2次最適化問題に対する現行手法の適用性を高めるために,分解に基づくアプローチを提案する。
我々は、乗算器の交互方向法(ADMM)が、MBOを二項制約のない問題(量子アルゴリズムで解ける)に分割できることを示した。
提案手法の有効性は,Qiskit で実装された量子回路上での VQE と QAOA を用いたシミュレーションにより,いくつかの最適化問題に対して得られた数値結果によって示される。
論文 参考訳(メタデータ) (2020-01-07T14:43:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。